Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (11): 809-817    DOI: 10.11901/1005.3093.2016.718
Orginal Article Current Issue | Archive | Adv Search |
Effect of Annealing on Microstructure and Mechanical Properties of Ultrafine-grained TWIP Steel Produced by Severely Asymmetric and Symmetric Rolling
Xuefeng YAO1, Bin FU1,2, Liming FU1(), Daoda ZHANG3, Dengcan YAO3, Aidang SHAN1
1 Department of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
2 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
3 Jiangxi Mechanical Science Institute, Nanchang 330002, China.
Cite this article: 

Xuefeng YAO, Bin FU, Liming FU, Daoda ZHANG, Dengcan YAO, Aidang SHAN. Effect of Annealing on Microstructure and Mechanical Properties of Ultrafine-grained TWIP Steel Produced by Severely Asymmetric and Symmetric Rolling. Chinese Journal of Materials Research, 2017, 31(11): 809-817.

Download:  HTML  PDF(8975KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of annealing temperature on microstructure and mechanical properties of TWIP steel (Fe-0.5C-18.6Mn-1.5Al-0.5Si) is investigated, while the steel was produced aforehand by severe symmetric and asymmetric rolling at room temperature. The results show that the grain size is significantly refined after severe asymmetric and symmetric rolling, and the ultimate tensile strength (UTS) increased from 593 MPa to 2021 MPa. The severely rolled TWIP steel shows no recrystallization when annealed below 500℃, partial recrystallization when annealed between 500-600℃, and full recrystallization when annealed above 700℃. With the increasing annealing temperature, the strength decreases while the elongation increases. Specifically, the UFG (Ultrafine-grained) TWIP steel with an average grain size of 500nm and excellent mechanical properties can be obtained when annealed at 700℃, i.e. the UTS, elongation and product of strength and elongation of the steel are 1114 MPa,59.4 % and 66.2 GPa·%, respectively. Moreover, when annealed between 500-600℃, there existed many dispersive fine-grained intermetallic compounds with DO3-type crystallographic structure in the produced steel, which can significantly enhance the strength of the steel

Key words:  metallic materials      ultrafine-grained TWIP steel      severely asymmetric rolling      annealing      mechanical property     
Received:  07 December 2016     
Fund: Supported by National Science Foundation for Post-doctoral Scientists of China (No. 2015M581608), Foundation of Department of Science and Technology of Jiangxi Province (No. 20151BDH80082) and National Key Research and Development Program of China (No. 2014ZX07214-002)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.718     OR     https://www.cjmr.org/EN/Y2017/V31/I11/809

Fig.1  OM images of microstructures of TWIP steels before ASR+SR (a), after 96% ASR+SR (b)
Fig.2  OM images of microstructures of heavily ASR+SRed TWIP steels annealed at (a) 400℃, (b) 500℃, (c) 600℃, (d) 700℃, (e) 800℃, (f) 900℃
Fig.3  TEM images of TWIP steels (a) 96% ASR+SRed, (b) 500℃ annealing, (c) 600℃ annealing, (d) 700℃ annealing
Fig.4  EBSD results of 600℃ annealed TWIP steel(a) grain boundary distributions (black line: 2°~15°, red line: >15°, green line: phase boundary), (b) misorientation distributions, (c) grain size distributions
Fig.5  SEM images and TEM analysis of DO3 phase in TWIP steel annealed at 500℃ (a) SEM image, (b) bright field image of DO3 phase, (c) dark field image of DO3 phase in (200) ordered spot,(d) diffraction pattern of DO3 phase, [011]BCC zone axis
Fig.6  XRD spectra of TWIP steels (a) before tensile test, (b) after tensile test
Fig.7  Microhardness of TWIP steels under diffferent process
Fig.8  Tensile properties of TWIP steels under different process (a) tensile curve, (b) strength and elongation
Fig.9  Strain-hardening rate of TWIP steels during different process
Fig.10  SEM images of tensile fractured surfaces of TWIP steels (a) cold rolled, (b) cold rolled+550℃ annealed, (c) cold rolled+600℃ annealed, (d) cold rolled+800℃ annealed
[1] Lan P, Du C W, Ji Y, et al.Research status of high manganese TWIP steel for automotive industry[J]. China Metallurgy, 2010, 24(7): 6(兰鹏, 杜辰伟, 纪元等. 汽车用高锰TWIP钢的研究现状[J]. 中国冶金, 2014, 24(7): 6)
[2] Liu X H, Liu W, Liu J B, et al.Current situation of the TWIP steel[J]. Materials Review, 2010, 24(11): 102(刘向海, 刘薇, 刘嘉斌等. 孪生诱发塑性(TWIP)钢的研究现状[J]. 材料导报, 2010, 24(11): 102)
[3] Grässel O, Frommeyer G, Derder C, et al.Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels[J]. Le Journal de Physique IV, 1997, 7(C5): 383
[4] Bouaziz O, Allain S, Scott C.Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels[J]. Scripta Materialia, 2008, 58(6): 484
[5] Allain, S, Chateau, J P, Bouaziz, O.A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel[J]. Materials Science and Engineering: A, 2004, 387: 143
[6] Allain, S, Chateau, J P, Dahmoun, D, et al.Modeling of mechanical twinning in a high manganese content austenitic steel[J]. Materials Science and Engineering: A, 2004, 387: 272
[7] Dastur Y, Leslie W.Mechanism of work hardening in Hadfield manganese steel[J]. Metallurgical transactions A, 1981, 12(5): 749
[8] Sevillano J G.An alternative model for the strain hardening of FCC alloys that twin, validated for twinning-induced plasticity steel[J]. Scripta Materialia, 2009, 60(5): 336
[9] Shterner V, Timokhina I B, Beladi H.On the work-hardening behaviour of a high manganese TWIP steel at different deformation temperatures[J]. Materials Science and Engineering: A, 2016, 669: 437
[10] Bouaziz O, Allain S, Scott C, et al.High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Current opinion in solid state and materials science, 2011, 15(4): 141
[11] Dini G, Najafizadeh A, Ueji R, et al.Tensile deformation behavior of high manganese austenitic steel: The role of grain size[J]. Materials & Design, 2010, 31(7): 3395
[12] Koyama M, Sawaguchi T, Lee T, et al.Work hardening associated with ɛ-martensitic transformation, deformation twinning and dynamic strain aging in Fe-17Mn-0.6 C and Fe-17Mn-0.8 C TWIP steels[J]. Materials Science and Engineering: A, 2011, 528(24): 7310
[13] Saha R, Ueji R, Tsuji N.Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel[J]. Scripta Materialia, 2013, 68(10): 813
[14] Matoso M S, Figueiredo R B, Kawasaki M, et al.Processing a twinning-induced plasticity steel by high-pressure torsion[J]. Scripta Materialia, 2012, 67(7): 649
[15] Hamada A, Karjalainen L.High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels[J]. Materials Science and Engineering: A, 2010, 527(21): 5715
[16] Bagherpour E, Reihanian M, Ebrahimi R.On the capability of severe plastic deformation of twining induced plasticity (TWIP) steel[J]. Materials & Design, 2012, 36: 391
[17] Timokhina I, Medvedev A, Lapovok R.Severe plastic deformation of a TWIP steel[J]. Materials Science and Engineering: A, 2014, 593: 163
[18] Zhao Y H, Zhu Y T, Liao X Z, et al.Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy[J]. Applied physics letters, 2006, 89(12): 121906
[19] Ding Y, Jiang J, Shan A.Microstructures and mechanical properties of commercial purity iron processed by asymmetric rolling[J]. Materials Science and Engineering: A, 2009, 509(1): 76
[20] Ueji R, Tsuchida N, Terada D, et al.Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure[J]. Scripta Materialia, 2008, 59(9): 963
[21] Ji Y, Park J.Development of severe plastic deformation by various asymmetric rolling processes[J]. Materials Science and Engineering: A, 2009, 499(1): 14
[22] Jiang J, Ding Y, Zuo F, et al.Mechanical properties and microstructures of ultrafine-grained pure aluminum by asymmetric rolling[J]. Scripta Materialia, 2009, 60(10): 905
[23] Li Z, Fu L, Fu B, et al.Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling[J]. Materials Science and Engineering: A, 2012, 558: 309
[24] Kim S-H, Kim H, Kim N J.Brittle intermetallic compound makes ultrastrong low-density steel with large ductility[J]. Nature, 2015, 518(7537): 77
[25] Yang M, Yuan F, Xie Q, et al.Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel[J]. Acta Materialia, 2016, 109: 213
[26] Birks L, Friedman H.Particle size determination from X-ray line broadening[J]. Journal of Applied Physics, 1946, 17(8): 687
[27] Gutierrez-Urrutia I, Zaefferer S, Raabe D.The effect of grain size and grain orientation on deformation twinning in a Fe-22wt.% Mn-0.6wt.%C TWIP steel[J]. Materials Science and Engineering: A, 2010, 527(15): 3552
[28] Zhao Y, Zhu Y, Liao X, et al.Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy[J]. Applied physics letters, 2006, 89(12): 121906
[29] Xiong R G, Fu R Y, Su Y, et al.Fracture mechanism of TWIP steel under dynamic tensile condition[J]. Shanghai Metals, 2008, 30(5): 12(熊荣刚, 符仁钰, 苏钰等. 动态拉伸条件下TWIP钢的断裂机制[J]. 上海金属, 2008, 30(5): 12)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!