Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (5): 321-328    DOI: 10.11901/1005.3093.2015.468
研究论文 Current Issue | Archive | Adv Search |
Phase Identification in Cement Paste by Modulus Mapping
GAO Xiang1,2, WEI Ya1,**(), HUANG Wei2
1. Key Laboratory of Civil Engineering Safety of Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China
2. Ministry of Education ITS Engineering Research Center, Southeast University, Nanjing 210096, China
Cite this article: 

GAO Xiang, WEI Ya, HUANG Wei. Phase Identification in Cement Paste by Modulus Mapping. Chinese Journal of Materials Research, 2016, 30(5): 321-328.

Download:  HTML  PDF(3833KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Phases in cement paste can be identified in micro scale by dynamic mechanical analysis (DMA) based modulus mapping owing to the characteristics of this technique: rapid, precise, high resolution and non-destructive. According to the storage modulus mapping which reflects the differences of elastic properties, the unhydrated clinker, as well as the high density calcium silicate hydrate (CSH) gel and low density CSH gel, which surrounded the clinker can be recognized with the assistance of morphology observation, components analysis and in-situ static indentation etc. Results show that the chemical composition of HD CSH and LD CSH is the same, while their storage modulus are 36GPa and 24GPa respectively, and the phase identification can be accomplished by taking the individual storage modulus into account. Therefore, blindness and repetition in traditional experiments can be avoided by employing the method of DMA-based modulus mapping, and then the properties of interested phase can be acquired with targeted approach.

Key words:  inorganic non-metallic materials      cement paste      dynamic mechanical analysis      modulus mapping      phase identification      CSH gel      storage modulus     
Received:  20 August 2015     
ZTFLH:  TB321  
Fund: *Supported by National Natural Science Foundation of China No.51578316
About author:  **To whom correspondence should be addressed, Tel: (010) 62771646, E-mail: yawei@tsinghua.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.468     OR     https://www.cjmr.org/EN/Y2016/V30/I5/321

Fig.1  Schematic of dynamical mode
Fig.2  Typical loading curve
Al2O3 Fe2O3 CaO MgO SO3 SiO2 Na2Oeq
4.03 3.46 61.5 2.60 2.83 21.58 0.51
Table 1  Chemical composition of raw materials (%, mass fraction)
Fig.3  AFM image of surface roughness
Fig.4  Target test area and its modulus mapping, topography and 3D photo, (a) modulus mapping, (b) topography, (c) 3D photo
Fig.5  Images of storage modulus at specific cross sections, (a) schematic of specific cross sections, (b) storage modulus at line 1, (c) storage modulus at line 2, (d) storage modulus at line 3, (e) storage modulus at line 4
Phase Average of storage modulus / GPa Range of storage modulus / GPa Indentation
modulus / GPa
line 1 line 2 Line3 Line4
HD CSH 35.23 36.26 35.57 35.07 26-49 36.1
LD CSH 24.42 23.23 23.53 24.92 18-32 23.7
Table 2  Storage modulus of two different phases in cross sections
Fig.6  Schematic of EDS/NI experiments on target area and its topography, (a) SEM photo of indentaion area, (b) AFM photo of indentation area, (c) location of EDS/NI experiments and schematic of different phase
Fig.7  Mechanical parameters determined by nanoindentation and comparison between storage modulus and indentation modulus
Fig.8  Percentage of major elements in different phase
Fig.9  Calcium to Silicon ratio of different phase
1 F. J. Ulm, M. Vandamme, C. Bobko, J. Alberto Ortega, K. Tai, C. Ortiz, Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale, Journal of the American Ceramic Society, 90(9), 2677(2007)
2 P. Trtik, B. Münch, P. Lura, A critical examination of statistical nanoindentation on model materials and hardened cement pastes based on virtual experiments, Cement and Concrete Composites, 31(10), 705(2009)
doi: 10.1016/j.cemconcomp.2009.07.001
3 J. J. Chen, L. Sorelli, M. Vandamme, F. J. Ulm, G. Chanvillard, A coupled nanoindentation/SEM-EDS study on low water/cement ratio portland cement paste: evidence for C-S-H/Ca (OH) 2 nanocomposites, Journal of the American Ceramic Society, 93(5), 1484(2010)
4 C. Hu, Microstructure and mechanical properties of fly ash blended cement pastes, Construction and Building Materials, 73, 618(2014)
5 YI Nan, GU Yizhuo, LI Min, ZHANG Zuoguang, Characterization on topography and dimension of the interphase structure in carbon fiber composites, Acta Materiae Compositae Sinica, 27(5), 36(2010)
(易楠, 顾轶卓, 李敏, 张佐光, 碳纤维复合材料界面结构的形貌与尺寸的表征, 复合材料学报, 27(5), 36(2010))
6 G. Balooch, G. W. Marshall, S. J. Marshall, O. L. Warren, S. S. Asif, M. Balooch, Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth, Journal of Biomechanics, 37(8), 1223(2004)
doi: 10.1016/j.jbiomech.2003.12.012
7 P. S. Uskokovic, C. Y. Tang, C. P. Tsui, N. Ignjatovic, D. P. Uskokovic, Micromechanical properties of a hydroxyapatite/poly-L-lactidebiocomposite using nanoindentation and modulus mapping, Journal of the European Ceramic Society, 27(2), 1559(2007)
8 P. Schön, K. Bagdi, K. Molnár, P. Markus, B. Pukánszky, G. J. Vancso, Quantitative mapping of elastic moduli at the nanoscale in phase separated polyurethanes by AFM, European Polymer Journal, 47(4), 692(2011)
doi: 10.1016/j.eurpolymj.2010.09.029
9 W. Li, S. Kawashima, J. Xiao, D. J. Corr, C. Shi, S. P. Shah, Comparative investigation on nanomechanical properties of hardened cement paste, Materials and Structures, 1(2015)
10 J. Xu, D.J. Corr, S. P. Shah, Nanomechanical properties of CSH gel/cement grain interface by using nanoindentation and modulus mapping, Journal of Zhejiang University Science A, 16(1), 38(2015)
11 M. Miller, C. Bobko, M. Vandamme, F. Ulm, Surface roughness criteria for cement paste nanoindentation, Cement and Concrete Research, 38(4), 467(2008)
doi: 10.1016/j.cemconres.2007.11.014
12 Y. Zhang, S. Bai, M. Miao, Y. Jin, Microstructure and mechanical properties of an alumina-glass low temperature co-fired ceramic, Journal of the European Ceramic Society, 29(6), 1077(2009)
doi: 10.1016/j.jeurceramsoc.2008.07.056
13 H. M. Jennings, Refinements to colloid model of CSH in cement: CM-II, Cement and Concrete Research, 38(3), 275(2008)
doi: 10.1016/j.cemconres.2007.10.006
14 M. Vandamme, F. Ulm, Nanogranular origin of concrete creep, Proceedings of the National Academy of Sciences, 106(26), 10552(2009)
15 LV Peng, ZHAI Jianping, NIE Rong, LV Huifeng, Investigation on the early stage hydration of portland cement using enviromental scanning electron microscopy, Journal of the Chinese Ceramic Society, 32(04), 530(2004)
(吕鹏, 翟建平, 聂荣, 吕慧峰, 环境扫描电镜用于硅酸盐水泥早期水化的研究, 硅酸盐学报, 32(04), 530(2004))
16 A. J. Allen, J. J. Thomas, H. M. Jennings, Composition and density of nanoscale calcium-silicate-hydrate in cement, Nature materials, 6(4), 311(2007)
17 LIU Renguang, HAN Fanghui, YAN Peiyu, Characteristics of two types of C-S-H gel in hardened complex binder pastes blended with slag, Sci. China Tech. Sci., 8(43), 912(2013)
(刘仍光, 韩方晖, 阎培渝, 纳米压痕研究含矿渣硬化浆体C-S-H 凝胶的特性, 中国科学: 技术科学, 8(43), 912(2013))
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!