Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (1): 74-80    DOI: 10.11901/1005.3093.2016.159
Orginal Article Current Issue | Archive | Adv Search |
Interface Characteristics and Damping Performance of Ni-coated Short Carbon Fiber Reinforced AZ91D Magnesium Matrix Composites
Fuzhong REN(),Sizhan WU,Wei SHI
College of Material and Chemical Engineering, Tongren University, Tongren 554300, China
Cite this article: 

Fuzhong REN,Sizhan WU,Wei SHI. Interface Characteristics and Damping Performance of Ni-coated Short Carbon Fiber Reinforced AZ91D Magnesium Matrix Composites. Chinese Journal of Materials Research, 2017, 31(1): 74-80.

Download:  HTML  PDF(5626KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon fiber/Mg-alloy composites were fabricated by powder metallurgy technique using short carbon fibers without and with electroless plated Ni-coating as reinforcer and AZ91D powder as matrix.Then their interfacial morphology, elemental composition,mechanical properties and damping capacities were characterized by means of SEM,TEM-EDS,tensile tests and dynamic mechanical analyzer (DMA).Results shows that the carbon fibers are uniformly distributed in the composites and preferentially oriented paralleling to the extrusion direction.The Ni coating improves the wettability between the carbon fibers and AZ91D matrix. Based on the strain spectrum by different frequency strain and G-L characteristic line, it follows that there should be a damping mechanism other than the known dislocation damping mechanism for the composite. With the increasing strain frequency, the control step for the damping performance of composite changes mainly from interface slip to dislocation. The damping capacity of Ni-coated carbon fiber reinforced magnesium matrix composites increase with the rising temperature. One damping peak exists in the range of 250~300 ℃.The peak temperature moves to higher temperature with the increasing frequency,which shows the characteristics of the thermal activation of relaxation process. According to the Arrhenius formula the calculated thermal activation is 3.448 eV.

Key words:  composite      damping      dynamic thermomechanic analysis      short carbon fiber      AZ91D     
Received:  24 March 2016     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.159     OR     https://www.cjmr.org/EN/Y2017/V31/I1/74

Fig.1  Morphology of coated short carbon fibers
Fig.2  Morphology of AZ91D magnesium alloy powders
Fig.3  Composite bar after hot extrusion
Fig.4  Sample for tensile test (unit: mm)
Fig.5  Sample for damping test
Strain—Q-1 test T—Q-1 test
Mode single cantilever model
Temperature 25℃ 25~400℃
Frequency 1.0 Hz、4.0 Hz、10.0 Hz、 0.5 Hz、1.0 Hz、4.0 Hz、10.0 Hz
Strain 10-5~10-3 10-4
Heating rate 5℃/min
Table 1  Measurement conditions for damping parameters
Fig.6  Distribution of carbon fibers in the magnesium-matrix composite (a) and (b) are uncoated carbon fibers;(c) and (d) are coated carbon fibers
Fig.7  Line-scanning EDS results of the coated fiber reinforced magnesium matrix composite on the cross-section (a) morphology, (b) EDS spectrum
Fig.8  Morphology (a) and energy spectrum analysis (b) of composite interface
Fig.9  Comparison of tensile mechanical performance among three different materials
Fig.10  Morphology of the tensile fracture surface of magnesium matrix composite with coated carbon fibers reinforcement (a); uncoated carbon fibers reinforcement (b)
Fig.11  Comparison of damping values change with strain amplitude to three different materials (f=1 Hz)
Fig.12  Comparison of damping values change with strain amplitude to three different materials (f=4 Hz)
Fig.13  Comparison of damping values change with strain amplitude to three different materials (f=10 Hz)
Samples 0.5 Hz 1.0 Hz 4.0 Hz 10.0 Hz
Tp/℃ Tp/℃ Tp/℃ Tp/℃
5.0%(volume fraction)Ni-coated
cf/AZ91D
276.32 280.57 291.55 299.68
Table 3  Variation of the peak temperature of 5.0% (volume fraction) Ni-coated cf/AZ91D composite
Fig.14  G-L line of two different composite
Fig.15  Q -1-f-T characteristic curves of 5.0% (volume fraction) Ni-coated cf/AZ91D
Fig.16  Arrhenius relation between testing frequency and peak temperature
[1] Zhang X Q, Wang H W, Liao L H, et al.In situ synthesis method and damping characterization of magnesium matrix composites[J].Compos. Sci. Technol., 2007, 67: 720
[2] Ritchie I G, Pan Z L, SprungmannKW, et al.High damping alloys-the metallurgist's cure for unwanted vibrations[J]. Can. Metall. Quart., 1987, 26: 239
[3] Gu J H, Zhang X N, Gu M Y.Mechanical properties and damping capacity of (SiCp + Al2O3SiO2f)/Mg hybrid metal matrix composite[J]. J. Alloys Compd., 2004, 385: 104
[4] Hu X S, Zhang Y K, Zheng M Y, et al.A study of damping capacities in pure Mg and Mg-Ni alloys[J]. Scripta Mater., 2005, 52: 1141
[5] Cao W, Zhang C F, Fan T X, et al.In situ synthesis and damping capacities of TiC reinforced magnesium matrix composites[J]. Mater. Sci. Eng.: A, 2008, 496: 242
[6] G?ken J, Riehemann W.Dependence of internal friction of fibre-reinforced and unreinforced AZ91 on heat treatment[J]. Mater. Sci. Eng. A, 2002, 324: 127
[7] Zhang X Q, Wang H W, Liao L H, et al.The mechanical properties of magnesium matrix composites reinforced with (TiB2 + TiC) ceramic particulates[J]. Mater. Lett., 2005, 59: 2105
[8] Zhang X L, Li T J, Teng H T, et al.Semisolid processing AZ91 magnesium alloy by electromagnetic stirring after near-liquidus isothermal heat treatment[J]. Mater. Sci. Eng. A, 2008, 475: 194
[9] Shen M J, Zhang M F, Ying W F.Processing, microstructure and mechanical properties of bimodal size SiCp reinforced AZ31B magnesium matrix composites[J]. J. Magn. Alloys, 2015, 3: 162
[10] Deng K K, Li J C, Nie K B, et al.High temperature damping behavior of as-deformed Mg matrix influenced by micron and submicron SiCp[J]. Mater. Sci. Eng.A, 2015, 624: 62
[11] Wu Y W, Wu K, Nie K B, et al.Damping capacities and tensile properties in Grp/AZ91 and SiCp/Grp/AZ91 magnesium matrix composites[J]. Mater. Sci. Eng.A, 2010, 527: 7873
[12] Wu Y W, Wu K, Deng K K, et al.Effect of extrusion temperature on microstructures and damping capacities of Grp/AZ91 composite[J]. J. Alloys Compd., 2010, 506: 688
[13] Wu Y W, Wu K, Deng K K, et al.Damping capacities and tensile properties of magnesium matrix composites reinforced by graphite particles[J]. Mater. Sci. Eng.A, 2010, 527: 6816
[14] Gao J C, Tan Z, Ren F Z.Study on kinetics and technology of Ni electroless plating on carbon fibers[J]. J. Funct. Mater., 2011, 42: 1360
[14] (高家诚, 谭尊, 任富忠. 碳纤维表面化学镀镍工艺及机理研究[J]. 功能材料, 2011, 42: 1360)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!