Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (8): 599-604    DOI: 10.11901/1005.3093.2019.570
ARTICLES Current Issue | Archive | Adv Search |
Thermal Decomposition Dynamics of Nylon 66 and Its Composites
MIAO Yuezhen, WANG Xintong, XIE Mengshu, QI Kezhen, CHU Zengze, SUN Qiuju()
College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
Cite this article: 

MIAO Yuezhen, WANG Xintong, XIE Mengshu, QI Kezhen, CHU Zengze, SUN Qiuju. Thermal Decomposition Dynamics of Nylon 66 and Its Composites. Chinese Journal of Materials Research, 2020, 34(8): 599-604.

Download:  HTML  PDF(3065KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The thermal decomposition curves of nylon 66 (PA66) and two kinds of glass fiber reinforced nylon 66 composites (GF/PA) were measured by thermogravimetric analyzer, and the thermal decomposition kinetics of PA66 and GF/PA were investigated by the Kissinger method and Crane method. The results showed that the thermal decomposition reaction order of PA66, GF/PA-1 and GF/PA-2 were 0.949, 0.912 and 0.921, respectively, which were all consistent with first-order reactions with thermal decomposition activation energy of 218.65 kJ/mol, 121.81 kJ/mol and 132.23 kJ/mol, respectively. These results demonstrated that the incorporation of glass fiber reduced the thermal decomposition activation energy of PA66. In addition, by the same heating rate, the temperature corresponding to the maximum thermal decomposition rate for the two kinds of GF/PA was obviously lower than that for PA66, indicating that although glass fiber improved the performance of PA66, but accelerated the thermal decomposition process of PA66, and there was also a "wick effect".

Key words:  composite      nylon 66      glass fiber reinforced nylon 66      thermogravimetric analysis      thermal decomposition kinetics     
Received:  05 December 2019     
ZTFLH:  TQ327.1  
Fund: National Natural Science Foundation of China(51602207);Liaoning Natural Science Foundation(20170540825)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.570     OR     https://www.cjmr.org/EN/Y2020/V34/I8/599

Fig.1  TG and DTG curves of PA66 (a), GF/PA-1 (b) and GF/PA-2 (c)
SampleT5%/℃T20%/℃Tmax/℃Tover/℃Residue remaining/%
PA66304.4423.3443.5486.81.91
GF/PA-1213.6422.1440.3489.933.16
GF/PA-2227.5405.5422.4486.933.37
Table 1  Thermal decomposition data for PA66 and GF/PA
Fig.2  TG curves at different heating rates of PA66 (a), GF/PA-1 (b) and GF/PA-2 (c)
Fig.3  DTG curves at different heating rates (a) PA66; (b) GF/PA-1; (c) GF/PA-2

β

/K·min-1

Tp/℃(1/Tp)/×10-3 K-1ln(β/Tp2)/K-1·min-1
PA66GF/PA-1GF/PA-2PA66GF/PA-1GF/PA-2PA66GF/PA-1GF/PA-2
5423.5410.7391.51.441.461.50-11.48-11.45-11.39
10438.4433.7413.41.411.411.46-10.83-10.82-10.76
15443.5440.3422.41.401.401.44-10.44-10.43-10.38
20448.5454.9428.01.391.371.43-10.17-10.18-10.11
Table 2  Tp and corresponding calculated values of PA66 and GF/PA at different heating rates
Fig.4  Linear fitting curves of ln(β/Tp2)~1/Tp (a) PA66; (b) GF/PA-1; (c) GF/PA-2
Fig.5  Linear fitting curve of lnβ~1/Tp (a) PA66; (b) GF/PA-1; (c) GF/PA-2
[1] Tang J. Sequence distribution, crystallization behavior and copolymerization kinetics of nylon 6/66 copolymer [D]. Shanghai: East China University of Science and Technology, 2018
(汤杰. 尼龙6/66原位共聚物的序列分布、结晶行为及其反应动力学研究 [D]. 上海: 华东理工大学, 2018)
[2] Lv W Y. The research on essential flame retarded PA66 and PA66 composite materials [D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016
(吕文晏. 本质阻燃PA66及其复合材料的研究 [D]. 南京: 南京航空航天大学, 2016)
[3] Yin W Y, Zhang H, Chen Z Y. The mechanical properties of PA66 composites reinforced by glass fiber [J]. West Leather, 2019, 41(19): 128
(殷文英, 张慧, 陈志远. 玻纤增强PA66复合材料的力学性能 [J].西部皮革, 2019, 41(19): 128)
[4] Chen Y W. Study on the synthesis of phosphorus-containing flame retardant copolyamide66 and its properties [D]. Hangzhou: Zhejiang Sci-Tech University, 2015
(陈勇伟. 含磷阻燃共聚PA66的合成及性能研究 [D]. 杭州: 浙江理工大学, 2015)
[5] Fu Q. Study on toughened and reinforced nylon66 with Non-halogen flame retardants [D]. Guangzhou: South China University of Technology, 2010
(付强. 无卤阻燃增韧增强PA66的研究 [D]. 广州: 华南理工大学, 2010)
[6] Han Y, Xu Y, Liu Y, et al. An efficient interfacial flame-resistance mode to prepare glass fiber reinforced and flame retarded polyam‐ide 6 with high performance [J]. J Mater. Chem. A., 2013, 1(35): 10228
[7] Chen Y, Wang Q. Preparation, properties and characterizations of halogen-free nitrogen-phosphorous flame-retarded glass fiber rein‐forced polyamide 6 composite [J]. Polym. Degrad. Stabil., 2006, 91(9): 2003
[8] Dai Y R. Study on properties of aluminum diethylphosphinate retardent system on glass fiber reinforced flame retardent copolyamide 66 [D]. Hangzhou: Zhejiang Sci-Tech University, 2017
(代彦荣. 二乙基次磷酸铝阻燃体系对玻纤增强阻燃共聚尼龙66的性能研究 [D]. 杭州: 浙江理工大学, 2017)
[9] Chen Z S. Study on glass-fiber reinforced poly (butylene terephthalate) preparation technology and synergistic flame retardant modification [D]. Fuzhou: Fujian Normal University, 2015
(陈振树. 玻纤增强聚对苯二甲酸丁二醇酯的制备工艺探讨及协同阻燃改性研究 [D]. 福州: 福建师范大学, 2015)
[10] Zhu H G. Materials Science Research and Testing Methods (3rd Edition) [M]. Nanjing: Southeast University Press, 2016. 09: 311
(朱和国. 材料科学研究与测试方法(第3版) [M]. 南京: 东南大学出版社, 2016. 09: 311)
[11] Xie J Z, Dai H X, Lin X P, et al. Study on the thermal stability of polyamide 66 fiber [J]. Synthetic Fiber in China, 2017, 46(08): 7
(谢甲增, 戴宏翔, 林型跑等. 聚酰胺66纤维的热稳定性研究 [J]. 合成纤维, 2017, 46(08): 7)
[12] Zhang Y P, Dong C Z. Inorganic Chemistry (Part 1) [M]. Chengdu: University of Electronic Science and Technology Press, 2014, 07: 142
(张玉平, 董翠芝. 无机化学(上) [M]. 成都: 电子科技大学出版社, 2014. 07: 142)
[13] Cao X X. Study on Thermal Analysis Kinetics of Linear Low Density Polyethylene and Polypropylene/Ore-derived Micro-powder Composites [M]. Xuzhou: China University of Mining and Technology Press, 2015, 04: 25
(曹新鑫. 线性低密度聚乙烯、聚丙烯/矿生微粉复合材料的热分析动力学研究 [M]. 徐州: 中国矿业大学出版社, 2015. 04: 25)
[14] Yang R, Chen L, Yu J R, et al. Kinetics of thermal decomposition of domestic heterocyclic aromatic polyamide fibers [J]. Journal of Donghua University (Natural Science), 2014, 40(04): 379
(杨锐, 陈蕾, 于俊荣等. 国产含杂环的芳香族聚酰胺纤维的热分解动力学 [J]. 东华大学学报(自然科学版), 2014, 40(04): 379)
[15] Xu X N,Wang F, Hua F. Study on thermal degradation kinetic of brominated polystyrene in synchronizing antimony trioxide flame-retarded PA66 [J]. Eng. Plast. Appl., 2010, 38(2): 55
(徐晓楠, 王芳, 华菲. 溴化聚苯乙烯协同三氧化二锑阻燃PA66热分解动力学研究 [J]. 工程塑料应用, 2010, 38(2): 55)
[16] Ji C H. Study on thermal decomposition mechanism and kinetics of rare earth oxalates [D]. Ganzhou: Jiangxi University of Science and Technology, 2017
(姬传红. 稀土草酸盐的热分解机理及动力学研究 [D]. 赣州: 江西理工大学, 2017)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!