Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (1): 51-57    DOI: 10.11901/1005.3093.2017.109
ARTICLES Current Issue | Archive | Adv Search |
Finite Element Analysis for Hemodynamic Behavior of Bioprosthetic Heart Valves
Chen LIU1, Lijian YANG1(), Xing ZHANG2
1 Shenyang University of Technology, Shenyang 110870, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Chen LIU, Lijian YANG, Xing ZHANG. Finite Element Analysis for Hemodynamic Behavior of Bioprosthetic Heart Valves. Chinese Journal of Materials Research, 2018, 32(1): 51-57.

Download:  HTML  PDF(3594KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hemodynamic property in physiological saline solution of bioprosthetic heart valve was measured under the physiological considition using a pulse duplicator, accordingly, based on the above measured data, the stress and strain distribution on heart valve leaflets was analized by means of finite element analysis (FEA) at the microscopic level over a cardiac cycle, so that to assess the relationships between the structure and mechanical properties of the bioprosthetic heart valve. The measured parameters of the bioprosthetic heart valve (Edwards #2625) are as follows: the mean transvalvular pressure ~10.8 mmHg, the effective opening area ~2.0 cm2 and the regurgitant fraction ~8.4%, which all meet the requirements of the ISO-5840 standard; The FE simulation results show that the maximum principal stresse was 425 kPa during the systolic phase, the major stress concentration was found on the belly and the suture edge of the leaflet, which underwent severe bending deformation. The maximum principal stresse was 1.46 MPa during the diastolic phase, and the major stress concentration was found on the two sides of the suture of the leaflet; The valvular open areas at different time points were close to those measured during experimental tests, indicating the relibility of the FEA method. Thus, the combination of the simulation test and and the finite element simulation calculation may be considered as an efficient and relible stratigy to evaluate the relationships between the structure and mechanical properties of bioprosthetic heat valve.

Key words:  organic polymer materials      bioprosthetic heart valves      hemodynamic property      stress distribution      finite element analysis      pulsatile flow test     
Received:  31 January 2017     
ZTFLH:  R318.1  
Fund: Supported by National Natural Science Foundation of China (No. 31300788)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.109     OR     https://www.cjmr.org/EN/Y2018/V32/I1/51

Parameters Value
Radius of bases / mm 11
Valve height / mm 13.4
Commissural height / mm 3
Angle between open leaflet and vertical /(°) 3
Radius of the commissures / mm 11.5
Table 1  Design parameters for the bioprosthetic heart valve
Fig.1  Geometric model of the bioprosthetic heart valve: (a) front view, (b) top view
Parameters Value
Plastic modulus 4 MPa
Poisson ratio 0.45
Density 1000 kg/m3
Table 2  Material properties for the bioprosthetic heart valve
Fig.2  Boundary settings for the bioprosthetic heart valve
Fig.3  Time-dependent blood pressure of the left ventricular and aortic pressure curve(a), and time-dependent transvalvular blood flow (b) for a bioprothetic heart valve in a cardiac cycle
Parameters Exp. values Standard values
(Mounting diameter=21 mm)
Effective orifice area / cm2 Transvalvular pressure / mmHg 2.0
10.8
Equal or greater than 1.05
2-20
Regurgitant fraction / % 8.4 Equal or less than 10
Table 3  Key parameter values from experimental tests and from ISO-5840 standard
Fig.4  Loading time-dependent curve of transvalvular pressure
Fig.5  Maximum principal stress distribution among the heart valve leaflets during the cardiac cycle (MPa)
Fig.6  Displacement distribution among the heart valve leaflets during the cardiac cycle (mm)
Fig.7  Geometric orifice areas from experimental tests (a-c) and FE simulation (d-f) at different time points: (a, d) 0.05 s and (b, e) 0.20 s during the systole period, and (c, f) 0.50 s during the diastole period
[1] Lin W D, Askar S B.Present situation and the development of heart valve disease in adults[J]. Hosp. Pract., 2016, 22(4): 499(林伟德, 艾斯卡尔沙比提. 成人心脏瓣膜病的治疗现状与发展[J]. 岭南心血管病杂志, 2016, 22(4): 499)
[2] Liang J S, Yin G L.Research progress of anticoagulant after artificial heart valve replacement[J]. Mil. Med. J. S. Chin., 2013, 27(3): 208(梁江水, 殷桂林. 人工心脏瓣膜置换术后抗凝研究进展[J]. 华南国防医学杂志, 2013, 27(3): 208)
[3] Lis G J, Masztafiak J C, Kwiatek W M, et al.Distribution of selected elements in calcific human aortic valvesstudied by microscopy combined with SR-μXRF: Influence of lipids on progression of calcification[J]. Micron, 2014, 67: 141
[4] Butcher J T, Simmons C A, Warnock J N.Mechanobiology of the Aortic Heart Valve[J]. J. Heart Valve. Dis., 2008, 17(1): 62
[5] Yuan Q, Wang X W, Zhang C R.Geometry design theory and finite element analysis of bioprosthetic heart valve[J]. Chin. J. Tissue Eng. Res., 2007, 18(11): 3480(袁泉, 王晓伟, 张承瑞. 生物瓣膜几何设计理论及其有限元分析[J]. 中国组织工程研究与临床康复, 2007, 18(11): 3480)
[6] Ma X J, Du Y W, Zhang L N.Fluid solid interaction analysis of bioprosthetic heart valve[J]. Chin. J. Med. Instrumentation, 2014, 38(5): 325(马雪洁, 杜亚伟, 张黎楠. 人工生物瓣膜流固耦合分析[J].中国医疗器械杂志, 2014, 38(5): 325)
[7] Weinberg E J, Schoen F J, Mofrad M R K, et al. A computational model of aging and calcification in the aortic heart valve[J]. Plos One, 2009, 4(6): e5950
[8] Annerel S, Claessens T, Degroote J, et al.Validation of a numerical FSI simulation of an aortic BMHV by in vitro PIV experiments[J]. Med. Eng. Phys. Med., 2014, 36(8): 1014
[9] Piatti F, Sturla F, Marom G, et al.Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid-structure interaction approach[J]. J. Biomech., 2015, 48(13): 3650
[10] Smuts A N, Blaine D C, Scheffer C, et al.Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve[J]. J. Mech. Behav. Biomed. Mater, 2011, 4(1): 85
[11] Kim H, Chandran K B, Sacks M S, et al.An experimentally derived stress resultant shell model for heart valve dynamic simulations[J]. Ann. Biomed. Eng., 2016, 35(1): 30
[12] Li J, Luo X Y, Kuang Z B.A nonlinear anisotropic model for porcine aortic heart valves[J]. J. Biomech., 2001, 34(10): 1279
[13] Marom G, Haj-Ali R, Rosenfeld M, et al.A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root[J].Med. Biol. Eng. Comput., 2012, 50(2): 173
[14] Astorino M, Gerbeau J F, Pantz O, et al.Fluid-structure interaction and multi-body contact: Application to the aortic valves[J]. Comput. Method. Appl. M., 2009, 198(45): 3603
[15] Halevi R, Hamdan A, Marom G, et al.Progressive aortic valve calcification: Three-dimensional visualization and biomechanical analysis[J]. J. Biomech., 2015, 48(3): 489
[16] Cheng A, Nguyen T C, Malinowski, et al. Undersized mitral annuloplasty inhibits left ventricular basal wall thickening but does not affect equatorial wall cardiac strains-meeting discussion[J]. J. Heart Valve. Dis., 2007, 16(4): 349
[17] Bouchareb R, Boulanger M C, Fournier, et al. Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a RhoA/ROCK-dependent mechanism[J]. J. Mol. Cell Cardiol., 2014, 67: 49
[18] Mohammadi H, Bahramian F, Wan W.Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method[J]. Med. Eng. Phys., 2009, 31(9): 1110
[19] Kim H, Lu J, Sacks M S.Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model[J]. Ann. Biomed. Eng., 2007, 36(2): 262
[20] Kamenskya D, Hsub M, Schillingerc D.An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves[J]. Comput. Method. Appl. M., 2015, 284: 1005
[21] Pibarot P, Dumesnil J G, Cartier P C.Patient-prosthesis mismatch can be predicted at the time of operation[J]. Ann. Thorac. Surg., 2001, 71(5): 26
[22] Saikrishnan N, Kumar G, Sawaya F J.A review of diagnostic modalities and hemodynamics[J].Circulation, 2014, 129(2): 244
[23] Gabbay S, McQueen D M, Yellin E L. In vitro hydrodynamic comparison of mitral valve prostheses at high flow rates[J]. J. Thorac. Cardiov. Sur., 1978, 76(6): 771
[24] Gillinov A M, Blackstone E H, Rodriguez L L.Prosthesis-patient size: Measurement and clinical implications[J]. J. Thorac. Cardiov. Sur., 2003, 126(2): 313
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[6] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[7] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[8] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[9] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[10] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[11] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[12] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[13] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[14] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
[15] HUANG Jian, LIN Chunxiang, CHEN Ruiying, XIONG Wanyong, WEN Xiaole, LUO Xin. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties[J]. 材料研究学报, 2020, 34(9): 674-682.
No Suggested Reading articles found!