Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (2): 125-136    DOI: 10.11901/1005.3093.2019.339
ARTICLES Current Issue | Archive | Adv Search |
High Temperature Stability and Thermal Fatigue Behavior of DM Hot Working Die Steel
SHI Yuanji1,YU Linhui1,YU Zhaopeng2,CHENG Gong1,WU Xiaochun3,TENG Hongchun1()
1. Department of Mechanical Engineering, Nanjing Institute of Industry Technology, Nanjing 210046, China
2. School of Automotive Engineering, Changshu Institute of Technology, Suzhou 215500, China
3. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Cite this article: 

SHI Yuanji,YU Linhui,YU Zhaopeng,CHENG Gong,WU Xiaochun,TENG Hongchun. High Temperature Stability and Thermal Fatigue Behavior of DM Hot Working Die Steel. Chinese Journal of Materials Research, 2020, 34(2): 125-136.

Download:  HTML  PDF(11425KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and performance of a novel DM steel for hot forging dies were systematically investigated by means of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermal fatigue tester. Results show that the laminar M3C carbides gradually transform into blocky carbides M7C3 inside the martensitic slabs, while carbides M7C3 and M23C6 are found at boundaries of slabs. Based on the Uddeholm self-restricting thermal fatigue test results, the short cyclic thermal fatigue performance was controlled by dislocation rearrangement and annihilation. Whereas, the long cyclic one was affected by the temper resistance of the DM steel and strongly depended on the carbide morphology and their resistance to over-ageing. In addition, the free energies of formation for carbides M3C, M7C3 and M6C in the DM steel are 236.4, 212.0, and 228.9 kJ/mol, respectively. The mechanism of carbides evolution during the thermal stability test is consistent with thermal fatigue test, the transformation of the carbides follows the sequence as M3C→M7C3→M6C.

Key words:  metallography      hot working die steel      micro-analysis      carbides      High temperature stability      thermal fatigue     
Received:  09 July 2019     
ZTFLH:  TG430.1040  
Fund: Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB430024);the Natural Science Foundation of Jiangsu Province(BK20181036);Start-up Foundation of NIIT(YK180113)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.339     OR     https://www.cjmr.org/EN/Y2020/V34/I2/125

CMnSiCrMoWVFe
DM0.401.00.32.31.71.71.0Bal.
Table 1  Normal chemical composition of DM steel (mass fraction,%)
Fig.1  Schematic of the thermal fatigue test apparatus and specimen
Fig.2  Hardness dependence on time for DM steel at different tempering temperatures
Fig.3  TEM morphologies of DM steel after tempering at 620℃ for 1 h (a) bright-field image, (b) and (c) dark-field image of the strip-like carbides and corresponding SAD pattern, (d) EDS spectra of the strip-like carbides
Fig.4  TEM morphologies of DM steel after tempering at 620℃ for 1 h (a) bright-field images, (b) and (c) dark-field image of the rod-like carbides and corresponding SAD pattern
Morphology

Size (Length)

/nm

Type
1 hStrip100M3C
Rod600M7C3, M23C6
20 hNeedle100 ~ 200M2C
Block50 ~ 100M7C3
Table 2  The morphologies, sizes and types of carbides after tempering at 620℃ for 1 h and 20 h of DM steel
Fig.5  TEM morphologies of DM steel after tempering at 620℃ for 16 h
Fig.6  TEM morphologies of DM steel after tempering at 620℃ for 16 h (a) bright-field image, (b) and (c) dark-field image of the carbides and corresponding SAD pattern
Fig.7  Macroscopic morphologies of thermal fatigue cracks on the surface of DM steel after different thermal cycles (a) 400 cycles, (b) 600 cycles, (c) 1000 cycles, (d) 2000 cycles and (e) 3000 cycles
CyclesSurface damage factorSection damage factorTotal damage factor
6000.0210.100.009
20000.0530.280.019
30000.0770.290.023
Table 3  Thermal fatigue damage factors of DM steel after different thermal cycles:
Fig.8  Hardness gradient on the cross section of DM steel after different thermal cycles
Fig.9  TEM images of DM steel before thermal fatigue test by carbide extraction replica technique (a) 300 X; (b) 10000 X
Fig.10  TEM images of DM steel after 600 thermal cycles by carbide extraction replica technique (a) 300 X; (b) 10000 X
Fig.11  TEM images of DM steel after 2000 thermal cycles by carbide extraction replica technique (a) 300 X; (b) 10000 X
Fig.12  TEM images of DM steel after 3000 thermal cycles by carbide extraction replica technique (a) 300 X; (b) 10000 X; (c) diffraction patterns of the region c in fig.12 (b); (d) diffraction patterns of the region d in fig.12 (b)
Fig.13  Area precentage of carbides after different thermal cycles
Fig.14  Diameter distribution of carbides after different thermal cycles (a) 0 cycle, (b) 600 cycles, (c) 2000 cycles and (d) 3000 cycles
Fig. 15  XRD spectrum of DM steel after different thermal cycles
Fig.16  Dislocation density on the surface of DM steel after different thermal cycles
Reaction equationsΔG/J·mol-1Temperature range/℃
3[Fe]α+[C]=Fe3CΔGFe3C=6450+23.09T25~727
7[Cr]+3[C]=Cr7C3ΔGCr7C3=-356120+398.25T25~1857
23[Cr]+6[C]=Cr23C6ΔGCr23C6=-887890+1156.19T25~1520
2[Mo]+[C]=Mo2CΔGMo2C=-123410+135.54T25~1100
3[Fe]+3[Mo]+[C]=Fe3Mo3CΔGFe3Mo3C=-149497+154.21T25~900
[Mo]+[C]=MoCΔGMoC=-125500+89.98T25~700
[V]+[C]=VCΔGVC=-77180+92.29T25~2000
Table 4  The free energy of formation for the carbides in ΔGMxCy DM steel
Fig.17  Relationship of the free energy of formation for the carbides in DM steel with temperature
[1] Shi Y J, Wu X C. Research on oxidation wear behavior of a new hot forging die steel [J]. J. Mater. Eng. Perform., 2018, 27(1): 176
[2] Kim Y J, Choi C H. A study on life estimation of hot forging die [J]. Int. J. Precis. Eng. Man., 2009, 10(3): 105
[3] Kosec B K, Kosec L, Kopa? J. Analysis of casting die failures [J]. Eng. Fail. Anal., 2001, 8(4): 355
[4] Arif A F M, Sheikh A K, Qamar S Z. A study of die failure mechanisms in aluminum extrusion [J]. J. Mater. Process. Tech., 2003, 134(3): 318
[5] Chen C, Wang Y, Ou H, et al. A review on remanufacture of dies and moulds [J]. J. Clean. Prod., 2014, 64: 13
[6] Abel A, Ham R K. The cyclic strain behaviour of crystals of aluminum-4wt.% copper-ii. low cycle fatigue [J]. Acta. Metall., 1966, 14(11): 1495
[7] McGrath J T, Bratina W J. Interaction of dislocations and precipitates in quench-aged iron-carbon alloys subjected to cyclic stressing [J]. Acta. Metall., 1967, 15(2): 329
[8] Cui C S, Gao X H, Su G Q, et al. Effect of Tempering Temperature on Microstructure and Mechanical Properties of High Cr Martensitic Heat Resistant Steel [J]. Northeast. U. Nat. Sci., 2018, 39(4): 501
[8] (崔辰硕, 高秀华, 苏冠侨等. 回火温度对高Cr马氏体耐热钢组织与性能的影响 [J]. 东北大学学报: 自然科学版, 2018, 39(4): 501)
[9] Yan W, Wang W, Shan Y Y, et al. Microstructural stability of 9-12%Cr ferrite/martensite heat-resistant steels [J]. Front. Mater. Sci., 2013, 7(1): 1
[10] Li S, Wu X C, Li X X, et al. High temperature performance of a Mo-W type hot work die steel of high thermal conductivity [J]. Chin. J. Mat. Res., 2017, 31(1): 32
[10] (李爽, 吴晓春, 黎欣欣等. 钼钨系高导热率热作模具钢高温性能 [J]. 材料研究学报, 2017, 31(1): 34)
[11] Min Y A, Bergstr?m J, Wu X C, et al. Oxidation and thermal fatigue behaviors of two type hot work steels during thermal cycling. J. Iron Steel Res. Int., 2013, 20(11): 90
[12] Yang J X. Microstructure and properties stability and thermal fatigue properties of K465 nickel-based superalloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2006
[12] (杨金侠. K465镍基高温合金的组织和性能稳定性及热疲劳性能 [D]. 沈阳: 中国科学院金属研究所, 2006)
[13] Li J W, Shi Y J, Wu X C. Effect of initial hardness on the thermal fatigue behavior of AISI H13 steel by experimental and numerical investigations [J]. Fatigue. Fract. Eng. M., 2018, 41(6): 1260
[14] Wu X C, Xu L P. Computer aided evaluation of thermal fatigue cracks on hot-work tool steel [A]. Proceedings of the 6th International tooling conference and The Use of Tools Steels: Experience and Research [C]. Sweden, 2002
[15] Keijser T D, Mittemeijer E J, Rozendaal H C F. The determination of crystallite-size and lattice-strain parameters in conjunction with the profile-refinement method for the determination of crystal structures [J]. J. Appl. Crystallogr., 1983, 16(3): 309
[16] Ungár T, Dragomir I, Revesz A, et al. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice [J]. J. Appl. Crystallogr., 1999, 32(5): 992
[17] Liu L R, Jin T, Zhao N R, et al. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy [J]. Mat. Sci. Eng. A, 2003, 361(1): 191
[18] He L Z, Zheng Q, Sun X F, et al. Effect of carbides on the creep properties of a Ni-base superalloy M963 [J]. Mat. Sci. Eng. A, 2005, 397(1): 297
[19] Inoue A, Masumoto T. Carbide reactions (M3C→M7C3→M23C6→M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels [J]. Metall. Trans. A, 1980, 11(5): 739
[20] Zhou Q C Wu X C, Shi N N, et al. Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering [J]. Mat. Sci. Eng. A, 2011, 528(18): 5696
[21] Hu X B, Li L, Wu X C, et al. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium [J]. Int. J. Fatigue, 2006, 28(3): 175
[22] Shi Y J, Wu X C, Li J W. Tempering stability of Fe-Cr-Mo-W-V hot forging die steels [J]. Int. J. Min. Met. Mater., 2017, 24(10): 1145
[23] Xie C. Research on microstructure evolution and mechanism of phase transformation during cryogenic treatment of high carbon high alloy steel [D]. Shanghai: Shanghai University, 2016
[23] (谢尘. 高碳高合金钢深冷处理微观结构演化及相变机理研究 [D]. 上海:上海大学, 2016)
[24] Sahu P, De M. Microstructural characterization of Fe-Mn-C martensites athermally transformed at low temperature by Rietveld meth-od [J]. Mat. Sci. Eng. A, 2002, 333(1): 10
[25] Medvedeva A, Bergstr?m J, Gunnarsson S, et al. High-temperature properties and microstructural stability of hot-work tool steels [J]. Mat. Sci. Eng. A, 2009, 523(1): 39
[26] Ye D L. Practical Inorganic Manual of Thermodynamic Data [M]. Beijing: Metallurgical Industry Press, 2002
[26] (叶大伦. 实用无机物热力学数据手册 [M]. 北京: 冶金工业出版社, 2002)
[1] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[2] WANG Wei, PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe. Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC[J]. 材料研究学报, 2023, 37(6): 432-442.
[3] CUI Zhiqiang, ZHANG Ningfei, WANG Jie, HOU Qingyu, HUANG Zhenyi. High Temperature Compression Deformation Behavior of 9Mn27Al10Ni3Si Low Density Steel[J]. 材料研究学报, 2022, 36(12): 907-918.
[4] HU Ruihang, YANG Zhen, LEI Qijun, LI Xinyang, DONG Ziyu, ZHANG Xiaotong, FAN Hongyu, NIU Jinhai. Effect of Helium Ions Irradiation on Stability of Nano-tungsten Whiskers[J]. 材料研究学报, 2022, 36(11): 850-854.
[5] XUAN Jingfan, FAN Hongyu, BAI Ying, HU Ruihang, LI Xinyang, TAO Wenchen, NI Weiyuan, NIU Jinhai. Etching Behavior of Tungsten under Irradiation of Low Energy and High Flux Hydrogen Ions[J]. 材料研究学报, 2020, 34(9): 659-664.
[6] Jian TU,Lei LIU,Shirun DING,Jianbo LI,Zhiming ZHOU,Anping DONG,Can HUANG. Effect of Degree and Temperature of Pre-deformation on Deformation Mechanism and Subsequent Recrystallization Behavior of High-entropy Alloy CoCrFeMnNi[J]. 材料研究学报, 2019, 33(6): 427-434.
[7] WU Liang,FAN Hongyu,NI Weiyuan,XU Yang,BAO Sen,ZHANG Yuwei,ZHOU Siqian,NIU Jinhai. Self-protection Performance of Nano-fuzz Formed on W-plate Surface Due to He+ Irradiation[J]. 材料研究学报, 2019, 33(11): 809-814.
[8] Zhiling HAO,Hongyu FAN,Jiayu GUO,Tingting HU,Meng LI,Hejing CUI,Bixuan ZHANG. He Plasma Assisted Preparation of Nanostructure Tungsten Materials[J]. 材料研究学报, 2017, 31(6): 415-421.
[9] Shuang LI,Xiaochun WU,Xinxin LI,Xijuan HE. High Temperature Performance of a Mo-W Type Hot Work Die Steel of High Thermal Conductivity[J]. 材料研究学报, 2017, 31(1): 32-40.
[10] Wei PAN,Zulai LI,Quan SHAN,Yehua JIANG,Zhiyang FENG,Rong ZHOU. Effect of Heat Treatment Process on Mechanical Properties of a Medium Carbon Low Alloy Steel[J]. 材料研究学报, 2015, 29(6): 422-428.
[11] Dongdong WANG,Can LIANG,Wenjie BAI,Yongquan LI,Quan DUAN. Intergranular Corrosion of 316LN Stainless Steel Welded Joints[J]. 材料研究学报, 2015, 29(4): 299-306.
[12] Zheng LV,Xueping REN,Zhihong LI,Xia JI,Ziming LU. Effect of Cyclic Heat Treatment on Microstructure and Mechanical Properties of Ti-V Microalloyed Steel[J]. 材料研究学报, 2015, 29(3): 227-234.
[13] Li WANG,Zhongjiao ZHOU,Weiguo JIANG,Di WANG,Jian SHEN,Langhong LOU. Effect of Secondary Orientation on Thermal Fatigue Behavior of a Nickel-base Single Crystal Superalloy DD33[J]. 材料研究学报, 2014, 28(9): 663-667.
[14] ZHOU Qiangguo, SHI Quanqiang,YAN Wei, WANG Wei, SHAN Yiyin, YANG Ke. Effect of Normalizing Temperature on Mechanical Properties of a Si-bearing High Chromium Martensitic Heat Resistant Steel[J]. 材料研究学报, 2013, 27(5): 461-468.
[15] CHEN Jun ZHOU Guoping LIU Zhenyu QIU Yiqing WANG Guodong. Effects of Annealing Time on Microstructure and Mechanical Properties of Continuous Casting Weathering Steel Containing 0.15%P Thin Cold-rolled Strip[J]. 材料研究学报, 2011, 25(3): 268-272.
No Suggested Reading articles found!