|
|
High Temperature Stability and Thermal Fatigue Behavior of DM Hot Working Die Steel |
SHI Yuanji1,YU Linhui1,YU Zhaopeng2,CHENG Gong1,WU Xiaochun3,TENG Hongchun1( ) |
1. Department of Mechanical Engineering, Nanjing Institute of Industry Technology, Nanjing 210046, China 2. School of Automotive Engineering, Changshu Institute of Technology, Suzhou 215500, China 3. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China |
|
Cite this article:
SHI Yuanji,YU Linhui,YU Zhaopeng,CHENG Gong,WU Xiaochun,TENG Hongchun. High Temperature Stability and Thermal Fatigue Behavior of DM Hot Working Die Steel. Chinese Journal of Materials Research, 2020, 34(2): 125-136.
|
Abstract The microstructure and performance of a novel DM steel for hot forging dies were systematically investigated by means of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermal fatigue tester. Results show that the laminar M3C carbides gradually transform into blocky carbides M7C3 inside the martensitic slabs, while carbides M7C3 and M23C6 are found at boundaries of slabs. Based on the Uddeholm self-restricting thermal fatigue test results, the short cyclic thermal fatigue performance was controlled by dislocation rearrangement and annihilation. Whereas, the long cyclic one was affected by the temper resistance of the DM steel and strongly depended on the carbide morphology and their resistance to over-ageing. In addition, the free energies of formation for carbides M3C, M7C3 and M6C in the DM steel are 236.4, 212.0, and 228.9 kJ/mol, respectively. The mechanism of carbides evolution during the thermal stability test is consistent with thermal fatigue test, the transformation of the carbides follows the sequence as M3C→M7C3→M6C.
|
Received: 09 July 2019
|
|
Fund: Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB430024);the Natural Science Foundation of Jiangsu Province(BK20181036);Start-up Foundation of NIIT(YK180113) |
[1] | Shi Y J, Wu X C. Research on oxidation wear behavior of a new hot forging die steel [J]. J. Mater. Eng. Perform., 2018, 27(1): 176 | [2] | Kim Y J, Choi C H. A study on life estimation of hot forging die [J]. Int. J. Precis. Eng. Man., 2009, 10(3): 105 | [3] | Kosec B K, Kosec L, Kopa? J. Analysis of casting die failures [J]. Eng. Fail. Anal., 2001, 8(4): 355 | [4] | Arif A F M, Sheikh A K, Qamar S Z. A study of die failure mechanisms in aluminum extrusion [J]. J. Mater. Process. Tech., 2003, 134(3): 318 | [5] | Chen C, Wang Y, Ou H, et al. A review on remanufacture of dies and moulds [J]. J. Clean. Prod., 2014, 64: 13 | [6] | Abel A, Ham R K. The cyclic strain behaviour of crystals of aluminum-4wt.% copper-ii. low cycle fatigue [J]. Acta. Metall., 1966, 14(11): 1495 | [7] | McGrath J T, Bratina W J. Interaction of dislocations and precipitates in quench-aged iron-carbon alloys subjected to cyclic stressing [J]. Acta. Metall., 1967, 15(2): 329 | [8] | Cui C S, Gao X H, Su G Q, et al. Effect of Tempering Temperature on Microstructure and Mechanical Properties of High Cr Martensitic Heat Resistant Steel [J]. Northeast. U. Nat. Sci., 2018, 39(4): 501 | [8] | (崔辰硕, 高秀华, 苏冠侨等. 回火温度对高Cr马氏体耐热钢组织与性能的影响 [J]. 东北大学学报: 自然科学版, 2018, 39(4): 501) | [9] | Yan W, Wang W, Shan Y Y, et al. Microstructural stability of 9-12%Cr ferrite/martensite heat-resistant steels [J]. Front. Mater. Sci., 2013, 7(1): 1 | [10] | Li S, Wu X C, Li X X, et al. High temperature performance of a Mo-W type hot work die steel of high thermal conductivity [J]. Chin. J. Mat. Res., 2017, 31(1): 32 | [10] | (李爽, 吴晓春, 黎欣欣等. 钼钨系高导热率热作模具钢高温性能 [J]. 材料研究学报, 2017, 31(1): 34) | [11] | Min Y A, Bergstr?m J, Wu X C, et al. Oxidation and thermal fatigue behaviors of two type hot work steels during thermal cycling. J. Iron Steel Res. Int., 2013, 20(11): 90 | [12] | Yang J X. Microstructure and properties stability and thermal fatigue properties of K465 nickel-based superalloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2006 | [12] | (杨金侠. K465镍基高温合金的组织和性能稳定性及热疲劳性能 [D]. 沈阳: 中国科学院金属研究所, 2006) | [13] | Li J W, Shi Y J, Wu X C. Effect of initial hardness on the thermal fatigue behavior of AISI H13 steel by experimental and numerical investigations [J]. Fatigue. Fract. Eng. M., 2018, 41(6): 1260 | [14] | Wu X C, Xu L P. Computer aided evaluation of thermal fatigue cracks on hot-work tool steel [A]. Proceedings of the 6th International tooling conference and The Use of Tools Steels: Experience and Research [C]. Sweden, 2002 | [15] | Keijser T D, Mittemeijer E J, Rozendaal H C F. The determination of crystallite-size and lattice-strain parameters in conjunction with the profile-refinement method for the determination of crystal structures [J]. J. Appl. Crystallogr., 1983, 16(3): 309 | [16] | Ungár T, Dragomir I, Revesz A, et al. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice [J]. J. Appl. Crystallogr., 1999, 32(5): 992 | [17] | Liu L R, Jin T, Zhao N R, et al. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy [J]. Mat. Sci. Eng. A, 2003, 361(1): 191 | [18] | He L Z, Zheng Q, Sun X F, et al. Effect of carbides on the creep properties of a Ni-base superalloy M963 [J]. Mat. Sci. Eng. A, 2005, 397(1): 297 | [19] | Inoue A, Masumoto T. Carbide reactions (M3C→M7C3→M23C6→M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels [J]. Metall. Trans. A, 1980, 11(5): 739 | [20] | Zhou Q C Wu X C, Shi N N, et al. Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering [J]. Mat. Sci. Eng. A, 2011, 528(18): 5696 | [21] | Hu X B, Li L, Wu X C, et al. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium [J]. Int. J. Fatigue, 2006, 28(3): 175 | [22] | Shi Y J, Wu X C, Li J W. Tempering stability of Fe-Cr-Mo-W-V hot forging die steels [J]. Int. J. Min. Met. Mater., 2017, 24(10): 1145 | [23] | Xie C. Research on microstructure evolution and mechanism of phase transformation during cryogenic treatment of high carbon high alloy steel [D]. Shanghai: Shanghai University, 2016 | [23] | (谢尘. 高碳高合金钢深冷处理微观结构演化及相变机理研究 [D]. 上海:上海大学, 2016) | [24] | Sahu P, De M. Microstructural characterization of Fe-Mn-C martensites athermally transformed at low temperature by Rietveld meth-od [J]. Mat. Sci. Eng. A, 2002, 333(1): 10 | [25] | Medvedeva A, Bergstr?m J, Gunnarsson S, et al. High-temperature properties and microstructural stability of hot-work tool steels [J]. Mat. Sci. Eng. A, 2009, 523(1): 39 | [26] | Ye D L. Practical Inorganic Manual of Thermodynamic Data [M]. Beijing: Metallurgical Industry Press, 2002 | [26] | (叶大伦. 实用无机物热力学数据手册 [M]. 北京: 冶金工业出版社, 2002) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|