Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (8): 561-568    DOI: 10.11901/1005.3093.2014.566
Current Issue | Archive | Adv Search |
Oxidation Behavior of in-situ Synthesized MoSi2-SiC Composites at 700℃
Laiqi ZHANG(),Lihui DUAN,Junpin LIN
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Laiqi ZHANG,Lihui DUAN,Junpin LIN. Oxidation Behavior of in-situ Synthesized MoSi2-SiC Composites at 700℃. Chinese Journal of Materials Research, 2015, 29(8): 561-568.

Download:  HTML  PDF(5133KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The long-term air oxidation behavior of in situ synthesized composites MoSi2-SiC with different volume fractions of SiC at 700 ℃ for 1000 h was investigated. The disintegration (pest) of the composites has not been observed after oxidation for 1000 h. The oxidation resistance of composites is significantly higher than that of monolithic MoSi2. The in situ synthesized composite MoSi2-30%SiC possesses higher oxidation resistance than the traditional composite with the same chemical composition fabricated by hot-pressing the mixture of commercial powders of MoSi2 and SiC. The oxide scale formed on the prepared composite is only composed of amorphous silica, therefore, the oxidation reaction of the materials may mainly occur between MoSi2 and O2. Silicon and molybdenum may simultaneously be oxidized at 700℃ for the composite, however, due to the faster volatilization of MoO3, thereby a thin continuous and dense amorphous SiO2 protective scale is rapidly formed on the composite surface, so the composite exhibits excellent long-term oxidation resistance.

Key words:  materials failure and protection      MoSi2-SiC composite      synthesized in situ      oxidation behavior at low temperature      pest     
Received:  08 October 2014     
Fund: *Supported by National Natural Science Foundation of China No.50871012 and National Basic Research Program of China No.2011CB605502.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.566     OR     https://www.cjmr.org/EN/Y2015/V29/I8/561

Fig.1  Oxidation kinetics curves of samples MoSiC10, MoSiC20, MoSiC30, MoSiC45, MS and WS at 700 ℃ for 1000 h (a) and the enlarged views of 0-100 h (b) and 0-20 h (c)
Fig.2  XRD spectra of samples WS, MS and MoSiC30 after oxidation for 1000 h
Fig.3  Si2p, Mo3d and O1s XPS narrow spectra of the oxide scale surfaces of MS, MoSiC10 and MoSiC30
Sample Element Binding energy /eV Corresponding phase Atom fraction/%
MS Mo3d 232.2 MoO3 0.50
Si2p 103.3 SiO2 28.12
O1s 532.2 SiO2 71.38
MoSiC10 Mo3d 0.25
Si2p 103.3 SiO2 32.11
O1s 532.2 SiO2 67.64
MoSiC30 Mo3d 0.15
Si2p 103.3 SiO2 29.79
O1s 532.2 SiO2 70.26
Table1  XPS analytical results of samples MS, MoSiC10 and MoSiC30
Fig.4  Macro surface morphologies of samples MoSiC10 (1), MoSiC20 (2), MoSiC30 (3), MoSiC45 (4), WS (5) and MS (6) oxidized at 700℃ for 1000 h
Fig.5  SEM surface morphologies of samples MoSiC10 (a), MoSiC20 (b), MoSiC30 (c), MoSiC45 (d), WS (e) and MS (f) oxidized at 700℃ for 1000 h
Fig.6  Schematic drawing of the oxidation mechanism of MoSi2-SiC composites at 700℃
1 E. Fitzer, Molybdenum disilicide as high-temperature material, in: Proceedings of 2nd Plansee Seminar, edited by F. Benesovsky(Vienna, Springer, 1955) p.56
2 T. C. Chou, T. G. Nieh,New observations of MoSi2 pest at 500℃, Scripta Metallurgica et Materialia, 26(10), 1637(1992)
3 C. G. McKamey, P. F. Tortorelli, J. H. DeVan, C. A. Carmichael,A study of pest oxidation in polycrystalline MoSi2, Journal of Materials Research, 7(10), 2747(1992)
4 J. H. Westbrook, D. L. Wood,“PEST” degradation in beryllides, silicides, aluminides and related compounds, Journal of Nuclear Materials, 12(2), 208(1964)
5 J. X. Chen, C. H. Li, Z. Fu, X. Y. Tu, M. Sundberg, R. Pompe,Low temperature oxidation behavior of a MoSi2-based material, Materials Science and Engineering A, 261(1-2), 239(1999)
6 J. Kuchino, K. Kurokawa, T. Shibayama, H. Takahashi,Effect of microstructure on oxidation resistance of MoSi2 fabricated by spark plasma sintering, Vacuum, 73(3-4), 623(2004)
7 K. Kurokawa, H. Houzumi, I. Saeki, H. Takahashi,Low temperature oxidation of fully dense and porous MoSi2, Materials Science and Engineering A, 261, 292(1999)
8 J. Arreguín-Zavala, S. Turenne, A. Martel, A. Benaissa,Microwave sintering of MoSi2-Mo5Si3 to promote a final nanometer-scale microstructure and suppressing of pesting phenomenon, Materials Characterization, 68, 117(2012)
9 K. Yanagihara, T. Maruyama, K. Nagata,Effect of third elements on the pesting suppression of Mo-Si-X intermetallics (X=Al, Ta, Ti, Zr and Y), Intermetallics, 4, S133(1996)
10 T. Dasgupta, A. M. Umarji,Improved ductility and oxidation resistance in Nb and Al cosubstituted MoSi2, Intermetallics, 16(6), 739(2008)
11 E. Str?m, Y. Cao, Y. M. Yao,Low temperature oxidation of Cr-alloyed MoSi2, Transactions of Nonferrous Metals Society of China, 17(6), 1282(2007)
12 K. Natesan, S. C. Deevi,Oxidation behavior of molybdenum silicides and their composites, Intermetallics, 8, 1147(2000)
13 ZHOU Hongming,LIU Gongqi, XIAO Lairong, YI Danqing, ZENG Lin, Low temperature oxidation behavior of MoSi2 composites strengthened and toughened by Si3N4 particles and SiC whiskers, Journal of Inorganic Materials, 24(5), 929(2009)
13 (周宏明, 柳公器, 肖来荣, 易丹青, 曾 麟, Si3N4颗粒及SiC晶须强韧化MoSi2复合材料的低温氧化行为, 无机材料学报, 24(5), 929(2009))
14 K. Hansson, M. Halvarsson, J. E. Tang,Oxidation behaviour of a MoSi2-based composite in different atmospheres in the low temperature range (400-550℃), Journal of the European Ceramic Society, 24, 3559(2004)
15 P. Z. Feng, X. H. Wang, Y. Q. He, Y. H. Qiang,Effect of high-temperature preoxidation treatment on the low-temperature oxidation behavior of a MoSi2-based composite at 500℃, Journal of Alloys and Compounds, 473(1-2), 185(2009)
16 YAN Jianhui,WANG Jinlin, TANG Siwen, In-situ synthesis and low temperature oxidation properties of TiC-MoSi2 composites, Transaction of Materials and Heat Treatment, 32(1), 5(2011)
16 (颜建辉, 王金林, 唐思文, TiC-MoSi2复合材料的原位合成及其低温氧化特性, 材料热处理学报, 32(1), 5(2011))
17 SUN Zuqing,ZHANG Laiqi, YANG Wangyue, ZHANG Yue, FU Xiaowei, A method of the preparation of in situ silicon carbide particulates reinforced molybdenum disilicide matrix composites, China Patent, ZL01141978.4(2005)
17 (孙祖庆, 张来启, 杨王玥, 张 跃, 傅晓伟, 一种制备碳化硅颗粒增强二硅化钼基复合材料的原位复合方法, 中国专利, ZL01141978.4(2005))
18 ZHANG Laiqi,SUN Zuqing, ZHANG Yue, YANG Wangyue, CHEN Guangnan, Microstructure and mechanical properties of in situ SiC particulates reinforced MoSi2 matrix composite, Acta Metallurgica Sinica, 37(3), 325(2001)
18 (张来启, 孙祖庆, 张 跃, 杨王玥, 陈光南, 原位SiC颗粒增强MoSi2基复合材料的显微组织和力学性能, 金属学报, 37(3), 325(2001))
19 FU Xiaowei,YANG Wangyue, ZHANG Laiqi, SUN Zuqing, ZHU Jing, High temperature creep behavior of in situ synthesized MoSi2-30%SiC composite, Acta Metallurgica Sinica, 38(7), 731(2002)
19 (傅晓伟, 杨王玥, 张来启, 孙祖庆, 朱 静,原位合成MoSi2-30%SiC复合材料高温蠕变行为, 金属学报, 38(7), 731(2002))
20 ZHANG Laiqi,PAN Kunming, DUAN Lihui, LIN Junpin, Oxidation behavior of in-situ synthesized MoSi2-SiC composites at 500℃, Acta Metallurgica Sinica, 49(11), 1303(2013)
20 (张来启, 潘昆明, 段立辉, 林均品, 原位合成MoSi2-SiC复合材料在500℃的氧化行为, 金属学报, 49(11), 1303(2013))
21 J. A. Lely, Shi ER, Silicon Carbide Semi-conductor at High Temperature (Shanghai, Shanghai Science and Technology Press, 1962) p.138
21 (J. A. 列来, 珥石编译, 碳化硅高温半导体(上海, 上海科学技术出版社, 1962) p.138)
22 T. C. Chou, T. G. Nieh,Comparative studies on the pest reactions of single-and poly-crystalline MoSi2, Scripta Metallurgica et Materialia, 27(1), 19(1992)
23 P. J. Meschter,Low-temperature oxidation of molybdenum disilicide, Metallurgical Transactions A, 23(6), 1763(1992)
24 T. A. Parthasarethy, M. G. Mendiratta, D. M. Dimiduck,Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)-Mo3Si alloys, Acta Materialia, 50(7), 1857(2002)
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[10] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[11] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[12] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[13] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[14] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[15] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
No Suggested Reading articles found!