Please wait a minute...
Chinese Journal of Materials Research  2013, Vol. 27 Issue (3): 312-316    DOI:
Original Article Current Issue | Archive | Adv Search |
Thermal Stability of TiC0.81N0.48 and TiC0.61N0.44O0.15 Coatings
ZHU Lihui1** ZHANG Yumeng 1 PENG Xiao1 Peter Leicht 2 LIU Yixiong 2
1. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
2. Kennametal Inc., Latrobe, PA 15650, USA
Cite this article: 

ZHU Lihui , **, ZHANG Yumeng , PENG Xiao , Peter Leicht , LIU Yixiong. Thermal Stability of TiC0.81N0.48 and TiC0.61N0.44O0.15 Coatings. Chinese Journal of Materials Research, 2013, 27(3): 312-316.

Download:  PDF(848KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  TiC0.81N0.48 coating and TiC0.61N0.44O0.15 coating deposited by medium temperature chemical vapor deposition, were characterized by Vickers hardness tester, X-ray diffraction (XRD) and confocal Raman spectrometer, and the effect of microstructure transformation on the hardness was investigated. Results show that the hardness of TiC0.81N0.48 and TiC0.61N0.44O0.15 coatings declines after annealing at 700 ℃ in vacuum, and then tends to be stable. At the beginning of the annealing, some C atoms escape from the lattice of TiCN, resulting in the formation of sp3C. As the annealing time prolongs, sp3C transforms to sp2C gradually. Thereafter the clustering of sp2C increases, the disorder degree decreases, and TiCN decomposes into TiC and TiN. The decrease of hardness is related with the release of residual stress due to the defect annihilation. Besides, the microstructure transformation especially the formation of sp3C and sp2C decreases the hardness of coatings. Compared with TiC0.61N0.44O0.15, the microstructure transformation takes places earlier in TiC0.81N0.48 coating, which exhibits worse thermal stability.
Key words:  materials failure and protection      TiCN coatings      thermal stability      microstructure transformation      hardness     
Received:  11 March 2013     
ZTFLH:  TG174  
Fund: *Supported by Kennametal Inc.. Manuscript received March 11, 2013; in revised form April 18, 2013.
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2013/V27/I3/312

1 T. Sadahiro, S. Yamaya, K. Shibuki, N. Ujiie, Wear resistant coating of cemented carbides and high speed steels by chemical vapour deposition, Wear, 48, 291(1978)
2 S. Ruppi, A. Larsson, Deposition, microstructure, and properties of nanocrystalline Ti(C, O, N) coatings, Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 21(1), 66(2003)
3 J. H. Hsieh, C. Li, W. Wu, A. L. K. Tan, Synthesis of Ti(C, N, O) coatings by unbalanced magnetron sputtering, Journal of Materials Processing Technology, 140(1-3), 662(2003)
4 Cacilda Moura, Luís Cunha, Jean Marie Chappé, Filipe Vaz, Study on the thermal stability of Ti(C, O, N) decorative coatings, Plasma Processes and Polymers, 6, s755(2009)
5 C. Olteanu, D. Munteanu, C. Ionescu, A. Munteanu, Tribological characterisation of magnetron sputtered Ti(C, O, N) thin films, International Journal of Materials and Product Technology, 39, 186 (2010)
6 Czettl C, Mitterer C, Mühle U, Rafaja D, Puchner S, Hutter H, M. Penoy, C. Michotte, M. Kathrein, CO addition in low-pressure chemical vapour deposition of medium-temperature TiCxN1-x based hard coatings, Surface & Coatings Technology, 206, 1691(2011)
7 Y. H. Lu, Y. G. Shen, Effect of carbon content on thermal stability of Ti-Cx-Ny thin films, Journal of Materials Research, 23(3), 671 (2008)
8 L. Karlsson, A. H?rling, M.P. Johansson, L. Hultman, G. Ramanath, The influence of thermal annealing on residual stresses and mechanical properties of arc-evaporated TiCxN1-x (x=0, 0.15 and 0.45) thin films, Acta Materialia, 50, 5103(2002)
9 J. M. Chappé, F. Vaz, L. Cunha, C. Moura, Lucas de Marco MC, L. Imhoff, S. Bourgeois, J. F. Pierson, Development of dark Ti(C, O, N) coatings prepared by reactive sputtering, Surface and Coatings Technology, 203(5-7), 804(2008)
10 J. Wasyluk, T. S. Perova, D. W. M. Lau, M. B. Taylor, D. G. McCulloch, J. Stopford, Ultraviolet and visible Raman analysis of thin a-C films grown by filtered cathodic arc deposition, Diamond & Related Materials, 19, 514(2010)
11 ZHANG Yumeng, ZHU Lihui, BAN Zhigang, LIU Yixiong, Effect of oxygen addition on the microstructure and properties of TiCN coating deposited by chemical vapor deposition, Cemented Carbide, 29(2), 66(2012)
(张雨萌, 朱丽慧, 班志刚, 刘一雄, 氧的掺入对化学气相沉积TiCN涂层的影响, 硬质合金, 29(2), 66(2012))
12 J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, S. R. P. Silva, Raman spectroscopy on amorphous carbon films, Journal of Applied Physics, 80(1), 440(1996)
13 Fan-Xin Liu, Kai-Lun Yao, Zu-Li Liu, Substrate tilting effect on structure of tetrahedral amorphous carbon films by Raman spectroscopy, Surface & Coatings Technology, 201, 7235(2007)
[1] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[4] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[5] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] ZHANG Jun, PENG Lijing, WANG Yu, WANG Xiaoyang, WANG Nan, WANG Meihan. Effect of Al/Ti Molar Ratio on Phase Structure and Hardness of (CrTiAl)N Films[J]. 材料研究学报, 2022, 36(1): 55-61.
[7] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[8] LI Gang, WEN Ying, YU Zhongmin, LIU Jian, XIONG Zilian. Effect of Al Content on Properties of CrFeNiAlxSi High Entropy Alloy[J]. 材料研究学报, 2021, 35(9): 712-720.
[9] LI Ningning, CHEN Yang, CHEN Xi, YIN Liying, CHEN Guang. Preparation Method and Diffusion Mechanism of Fe-Al Coating on Q235 Low Carbon Steel by Pack Aluminizing[J]. 材料研究学报, 2021, 35(8): 572-582.
[10] HAO Xinxin, XI Tong, ZHANG Hongzhen, YANG Chunguang, YANG Ke. Effect of Quenching Temperature on Microstructure and Properties of Cu-bearing 5Cr15MoV Martensitic Stainless Steel[J]. 材料研究学报, 2021, 35(12): 933-941.
[11] XU Chunping, CHEN chunyue, ZHANG yonghang, Gong wei, BAN daming. Flame Retard Modification of Vinyl Ester Resin with Phosphorous Polymer Type Flame Retardant[J]. 材料研究学报, 2021, 35(11): 843-849.
[12] DUAN Yuanman, ZHU Lihui, WU Xiaochun, GU Bingfu. Effect of Deep Cryogenic Treatment Time on Red Hardness of M2 High Speed Steel[J]. 材料研究学报, 2021, 35(1): 17-24.
[13] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[14] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[15] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
No Suggested Reading articles found!