Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (1): 17-24    DOI: 10.11901/1005.3093.2020.176
ARTICLES Current Issue | Archive | Adv Search |
Effect of Deep Cryogenic Treatment Time on Red Hardness of M2 High Speed Steel
DUAN Yuanman1, ZHU Lihui1(), WU Xiaochun1, GU Bingfu2
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2.Jiangsu Fuda Special Steel Co, Ltd, Yangzhong 212200, China
Cite this article: 

DUAN Yuanman, ZHU Lihui, WU Xiaochun, GU Bingfu. Effect of Deep Cryogenic Treatment Time on Red Hardness of M2 High Speed Steel. Chinese Journal of Materials Research, 2021, 35(1): 17-24.

Download:  HTML  PDF(14919KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of deep cryogenic treatment time on the room temperature hardness and red hardness of M2 high speed steel was investigated by means of Rockwell hardness tester, X-ray diffractometer, scanning electron microscope and transmission electron microscope. The results show that the room-temperature hardness and red hardness of M2 steel were improved by deep cryogenic treatment, and the red hardness at 650℃ was improved most significantly after deep cryogenic treatment for 12 hours. With the increasing deep cryogenic time, the amount of retained austenite decreased, the shape of retained austenite between martensitic laths changed from strip-like to film-like, the axial ratio and carbon content of martensite decreased gradually, and twin martensite was thinned; the segregation of primary carbides alleviated, and the amount of secondary carbides increased. The increase in the amount of secondary carbides can enhance the precipitation strengthening, and inhibit the decomposition of martensite at high temperatures. In addition, the further transformation of retained austenite to martensite and the thinning of twin martensite also favor the enhancement of room-temperature hardness and red hardness.

Key words:  metallic materials      M2 high speed steel      deep cryogenic treatment      red hardness      microstructure      carbide     
Received:  20 May 2020     
ZTFLH:  TG430.40  
Fund: National Key Research and Development Program of China(2016YFB0300403);Jinshan Talents Plan of Zhenjiang in 2017, Innovation and Entrepreneurship Talents Plan of Jiangsu Province in 2018

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.176     OR     https://www.cjmr.org/EN/Y2021/V35/I1/17

CSiMnPSCrMoWVFe
0.8500.2280.2800.0670.0204.3405.3706.3802.100Bal.
Table 1  Chemical composition of M2 high speed steel (%, mass fraction)
Fig.1  Hardness (a) and red hardness (b) of M2 high speed steel after deep cryogenic for different time
Fig.2  SEM images of M2 high speed steel after deep cryogenic for 0 h (a), 1 h (b), 4 h (c), 8 h (d) and 12 h (e)
Cryogenic timeTotal Ncarbide/mm-2Classification of carbides on the basis of size (Ncarbide)/mm-2
0~0.5 μm0.5~1 μm1~1.5 μm1.5~2 μm
0 h4132061178010
1 h1201944223331
4 h19511694225311
8 h25172169324240
12 h27092356329231
Table 2  Classification of carbides on the basis of size in M2 high speed steel under different deep cryogenic time
Fig.3  TEM images of M2 high speed steel after deep cryogenic treatment for 1 h (a) and 12 h (b)
Fig.4  XRD patterns of M2 high speed steel after deep cryogenic for different time
Cryogenic time/h014812
Austenite amount/%21.313.28.97.55.6
Table 3  Retained austenite amount in M2 high speed steel under different deep cryogenic time
Fig.5  Morphology of retained austenite in M2 high speed steel after deep cryogenic treatment for 1 h (a) bright field image; (b) dark field image and electron diffraction pattern
Fig.6  Morphology of retained austenite in M2 high speed steel after deep cryogenic treatment for 12 h (a) bright field image; (b) dark field image and electron diffraction pattern
Fig.7  XRD spectrum of M (211) after Gaussian fitting of M2 high speed steel after deep cryogenic for different time
Cryogenic time/h014812
Martensitic axial ratio1.0321.0281.0251.0241.022
Carbon content /%0.970.920.850.810.77
Table 4  The axial ratio and carbon content of martensite in M2 high speed steel under different deep cryogenic time
Fig.8  Effect of deep cryogenic time on amount of carbides (a) and XRD patterns of carbides (b) in M2 high speed steel
Fig.9  Morphology and EDS spectrum of secondary carbides in M2 high speed steel after deep cryogenic for 12 h
1 Zhou X F, Zheng Z X, Zhang W C, et al. Deformation-induced carbide transformation in M2 high-speed steel [J]. Metall. Mater. Trans., 2020, 51(2): 568
2 Amir H, Cyrus Z, Frank J C. Sintering behavior of NbC based cemented carbides bonded with M2 high speed steel [J]. Ceram. Int., 2019, 45(7): 8616
3 Firouzdor V, Nejati E, Khomamizadeh F. Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill [J]. J. Mater. Process. Technol., 2007, 206(1): 467
4 Chopra S A, Sargade V G. Metallurgy behind the cryogenic treatment of cutting tools: an overview [J]. Mater. Today: Proc., 2015, 2(4): 1814
5 Candane D, Alagumurthi N, Palaniradja K. Effect of cryogenic treatment on microstructure and wear characteristics of AISI M35 HSS [J]. Int. J. Mate. Sci. Appl., 2013, 2(2): 56
6 Das D, Dutta A K, Ray K K. Optimization of the duration of cryogenic processing to maximize wear resistance of AISI D2 steel [J]. Cryogenics, 2009, 49(5): 176
7 Molinari A, Pellizzari M, Gialanella S, et al. Effect of deep cryogenic treatment on the mechanical properties of tool steels [J]. J. Mater. Process. Technol., 2001, 118(1-3): 350
8 Xie C, Zhou L M, Min N, et al. Effect of deep cryogenic treatment on carbon distribution of high carbon and high alloy tool steel SDC99 during tempering [J]. Chin. J. Mater. Res., 2016, 30(11): 801
谢尘, 周龙梅, 闵娜等. 深冷处理对高碳高合金工具钢SDC99回火过程碳配分的影响 [J]. 材料研究学报, 2016, 30(11): 801
9 Huang J Y, Zhu Y T, Liao X Z, et al. Microstructure of cryogenic treated M2 tool steel [J]. Mater. Sci. Eng. A, 2003, 339(1): 241
10 Gill S S, Singh J, Singh R, et al. Effect of cryogenic treatment on AISI M2 high speed steel: metallurgical and mechanical characterization [J]. J. Mater. Eng. Perform., 2011, 21(7): 1
11 Ai Z R, Wu H Y, Yu K, et al. Effect of deep cryogenic treatment on properties of W6Mo5Cr4V2 high speed steel [J]. Special Steel, 2019, 40(06): 60
艾峥嵘, 吴红艳, 于凯等. 深冷处理对W6Mo5Cr4V2高速钢性能的影响 [J]. 特殊钢, 2019, 40(06): 60
12 Lv Y W, Yan X G, Han X J, et al. Effect of deep cryogenic treatment on red hardness of W6Mo5Cr4V2 high speed steel [J]. Heat Treat. Met., 2015, 40(10): 91
吕雁文, 闫献国, 韩晓君等. 深冷处理对W6Mo5Cr4V2高速钢红硬性的影响 [J]. 金属热处理, 2015, 40(10): 91
13 Li S Y, Liu T Z, Li G. Study on transformation of retained austenite under cryogenic condition [J]. Mater. Rep., 2003, (08): 80
李士燕, 刘天佐, 李钢. 在深冷条件下残余奥氏体转变的研究 [J]. 材料导报, 2003, (08): 80
14 Yan X G, Li D Y. Effects of the sub-zero treatment condition on microstructure, mechanical behavior and wear resistance of W9Mo3Cr4V high speed steel [J]. Wear, 2013, 302(1-2): 854
15 Jumov G V K. Martensite crystal lattice, mechanism of austenite-martensite transformation and behavior of carbon atoms in martensite [J]. Metall. Mater. Trans. A, 1976, 7(7): 999
16 Emadoddin E, Akbarzadeh A, Petrov R, et al. Anisotropy of retained austenite stability during transformation to martensite in a TRIP-assisted steel [J]. Steel Res. Int., 2013, 84(3): 297
17 Zhou J, Jing L, Xu S, et al. Improvement in fatigue properties of 2024-T351 aluminum alloy subjected to cryogenic treatment and laserpeening [J]. Surf. Coat. Technol., 2018, 345:31
18 Podgornik B, Paulin I, Zajec B, et al. Deep cryogenic treatment of tool steels [J]. J. Mater. Process. Technol., 2016, 229:398
19 Tyshchenko A I, Theisen W, Oppenkowski A, et al. Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel [J]. Mater. Sci. Eng. A, 2010, 527(26): 7027
20 Li D H, Li Z M, Xiao M G, et al. Effect of deep cryogenic treatment on mechanical properties and microstructure of low carbon high alloy martensitic bearing steel [J]. Chin. J. Mater. Res., 2019, 33(08): 561
李东辉, 李志敏, 肖茂果等. 深冷处理对低碳高合金马氏体轴承钢力学性能及组织的影响 [J]. 材料研究学报, 2019, 33(08): 561
21 Deng Y K, Chen J R, Wang S Z. High Speed Tool Steel [M]. Beijing: The Press of Metallurgical Industry, 2002
邓玉昆, 陈景榕, 王世章. 高速工具钢 [M]. 北京: 冶金工业出版社, 2002
22 Bhadeshia H K D H, Edmonds D V. Tempered martensite embrittlement: Role of retained austenite and cementite [J]. Met. Sci., 1979, 13(6): 325
23 Leem D S, Lee Y D, Jun J H, et al. Amount of retained austenite atroom temperature after reverse transformation of martensite to austenite in an Fe-13%Cr-7%Ni-3%Si martensitic stainless steel [J]. Scripta Mater., 2001, 45(7): 767
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!