Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (8): 572-582    DOI: 10.11901/1005.3093.2020.449
ARTICLES Current Issue | Archive | Adv Search |
Preparation Method and Diffusion Mechanism of Fe-Al Coating on Q235 Low Carbon Steel by Pack Aluminizing
LI Ningning1,2, CHEN Yang2, CHEN Xi1, YIN Liying1, CHEN Guang2()
1.School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
2.MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
Cite this article: 

LI Ningning, CHEN Yang, CHEN Xi, YIN Liying, CHEN Guang. Preparation Method and Diffusion Mechanism of Fe-Al Coating on Q235 Low Carbon Steel by Pack Aluminizing. Chinese Journal of Materials Research, 2021, 35(8): 572-582.

Download:  HTML  PDF(9041KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Fe-Al coating, with compactness, stiffness, and continuity, could be prepared on Q235 low carbon steel by pack aluminizing. The phase structure, morphology, composition, and hardness of the prepared coating were characterized by XRD, SEM, EDS, and micro-hardness tester respectively. Results indicate that the Fe-Al coating is composed of Fe2Al5 and FeAl3 phases, whilst, the coating fabricated at 750℃ is particularly rich in Fe2Al5 phase. With the rising temperature, the thickness of Fe-Al coating increases, whereas the micro-hardness decreases. As a result of aluminizing for different time, the formed coatings are composed of the two phases Fe2Al5 and FeAl3 as well. However, with the increasing aluminizing time, the content of FeAl3 phase decreases, while the micro-hardness of the coating decreases slightly. Finally, a diffusion mechanism related with the formation of Fe-Al coating is proposed based on the comprehensive analysis on the thermodynamics and kinetics of pack aluminizing process.

Key words:  metallic materials      Fe-Al layer      pack aluminizing      diffusion coefficient      micro-hardness     
Received:  26 October 2020     
ZTFLH:  TG131  
Fund: National Natural Science Foundation of China(51571117);the High-level Introduction of Talent Research Start-up Fund of North China University of Water Resources and Electric Power(4001/40680)
About author:  CHEN Guang, Tel: (025)84315159, E-mail: gchen@njust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.449     OR     https://www.cjmr.org/EN/Y2021/V35/I8/572

CMnSiSPFe
0.140~0.2200.300~0.650<0.300≤0.0500.045Bal.
Table 1  Chemical composition of the Q235 low-carbon steel (mass fraction, %)
ReagentsParticle size/μmPurity/%
Al7599
Al2O348Analytically pure
AlCl3-Analytically pure
Table 2  Particle size and purity of the Chemical reagents
Temperature /℃550650650650750850
Time/h201520252020
Table 3  Experimental plan of the pack cementation
Fig.1  XRD patterns of the Fe-Al layer fabricated at various temperatures
Fig.2  XRD patterns of the Fe-Al layer fabricated for different time at 650℃
Fig.3  Surface morphology of the Fe-Al layers fabricated at various temperature (a) 550℃, (b) 650℃, (c) 750℃, (d) 850℃
A1A2B1B2C1C2D1D2
Total100.00
Al4.5677.8971.9076.1971.3373.6473.2596.68
Fe95.4422.1128.1023.8128.6726.3626.753.32
Table 4  Composition of the Fe-Al layers fabricated at various temperature (atomic fraction, %) (A-550℃, B-650℃, C-750℃, D-850℃)
Fig.4  Surface morphology of the Fe-Al layers fabricated at various time at 650℃ (a) 15 h, (b) 20 h, (c) 25 h
Content/%, mass fractiona1a2B1B2c1c2
Total100.00
Al73.1080.5471.9076.1972.8273.21
Fe26.9019.4628.1023.8127.1826.79
Table 5  Composition of the Fe-Al layers fabricated at various time (a-15 h, b-20 h, c-25 h)
Fig.5  Cross-section morphology (a) and composition (b) of the Fe-Al layer fabricated at 550℃
Fig.6  Cross-section morphology and composition of the Fe-Al layers fabricated at different temperature (a, b) 650℃, (c, d) 750℃, (e, f) 850℃
Temperature/℃650750850
D/m2·s-14.20×10-145.01×10-139.39×10-13
Table 6  Diffusion coefficient D of Al at different temperature
Fig.7  Cross-section morphologies and compositions of the Fe-Al layers fabricated at different time (650℃) (a, b) 15 h, (c, d) 20 h, (e, f) 25 h
Time/h152025
D/m2·s-14.09×10-144.20×10-145.76×10-14
Table 7  Diffusion coefficient D of Al at different aluminized time
Fig.8  Micro-hardness of the Q235 steel (a) and Fe-Al layer fabricated at different temperature (b) 650℃, (c) 750℃, (d) 850℃
Fig.9  Micro-hardness of the Fe-Al layer fabricated at different time (at 650℃) (a) 15 h, (b) 20 h, (c) 25 h
Fig.10  The correlation between the Fe-Al layer thicknesses and different aluminizing temperature
Fig.11  The correlation between the Fe-Al layers thickness and aluminizing time
Fig.12  Schematic diagram of Fe-Al layer growth by pack cementation (a) FeAl3 phase began to form, (b) formation of Fe2Al5 phase, (c) growth of Fe2Al5 phase, (d) FeAl3 phase is eventually dispersed
1 Sun Z Q, Gao D C, Yang W E, et al. Research of Fe3Al intermetallics in application to structural material [J]. Chin. J. Mater. Res., 2001, 15: 69
孙祖庆, 高德春, 杨王珥等. Fe3Al基合金用作结构材料的应用基础研究 [J]. 材料研究学报, 2001, 15: 69
2 Huang G Q, Zhang G K, Luo C Y, et al. A review on hydrogen embrittlement of Fe-Al intermetallics [J]. Mater. Rev., 2018, 32: 1878
黄广棋, 张桂凯, 罗朝以等. Fe-Al金属间化合物氢脆效应研究现状 [J]. 材料导报, 2018, 32: 1878
3 Ma Z, Li L, Dong S Z, et al. Microstructure and properties of Fe-Al intermetallic compound coating prepared by argon arc cladding [J]. Mater. Prot., 2017, 50(10): 9
马壮, 李玲, 董世知等. 氩弧熔覆Fe-Al金属间化合物复合涂层的组织与性能 [J]. 材料保护, 2017, 50(10): 9
4 Liao Y L, Zhang Q Y, Zhou Y, et al. Wear resistance of hot dip aluminum coating on a carbon steel [J]. Chin. J. Mater. Res., 2014, 28: 737
廖远禄, 张秋阳, 周银等. 碳钢热浸镀铝涂层的磨损性能 [J]. 材料研究学报, 2014, 28: 737
5 Cinca N, Cygan S, Senderowski C, et al. Sliding wear behavior of Fe-Al coatings at high temperatures [J]. Coatings, 2018, 8: 268
6 Rezaee B, Rastegari S, Eyvazjamadi H. Formation mechanism of Pt-modified aluminide coating structure by out-of-the-pack aluminizing [J]. Surf. Eng., 2020, doi: 10.1080/02670844.2020.1741212
7 Hengprayoon B, Leelachao S, Patama V. Investigation of a simultaneous silicon-modified pack aluminizing method on pure nickel using quartz and RHA [J]. Key. Eng. Mat., 2018, 775: 323
8 Huang Z J, Jiang Z Q, Dong W B, et al. High-temperature corrosion resistance of composite coating prepared by micro-arc oxidation combined with pack cementation aluminizing [J]. J. Mater. Eng., 2018, 46(1): 44
黄祖江, 蒋智秋, 董婉冰等. 微弧氧化及包埋渗铝法制备的复合涂层高温抗蚀性能 [J]. 材料工程, 2018, 46(1): 44
9 Xie H, Yu L X, Ma R N, et al. A study of pack aluminizing technology on the surface of GCr15 steel [J]. J. Hebei Univ. Technol., 2017, 46(6): 57
谢欢, 于立新, 马瑞娜等. GCr15钢表面粉末包埋渗铝工艺研究 [J]. 河北工业大学学报, 2017, 46(6): 57
10 Majumdar S, Paul B, Kain V, et al. Formation of Al2O3/Fe-Al layers on SS 316 surface by pack aluminizing and heat treatment [J]. Mater. Chem. Phys., 2017, 190: 31
11 Huang M, Fu Q G, Wang Y, et al. Corrosion resistant ceramic coating for X80 pipeline steel by low-temperature pack aluminizing and oxidation treatment [J]. Surf. Rev. Lett., 2013, 20: 1350063
12 Xiang Z D, Datta P K. Formation of aluminide coatings on low alloy steels at 650℃ by pack cementation process [J]. Mater. Sci. Technol., 2004, 20: 1297
13 Awan G H, Hasan F U. The morphology of coating/substrate interface in hot-dip-aluminized steels [J]. Mat. Sci. Eng., 2008, 472A: 157
14 Meng F L, Gao L, Zhang Y Y, et al. Study on aluminizing layer microstructures and performance of 35CrMo steel penetrated with solid powder [J]. Petro-Chem. Equip., 2010, 39(2): 15
孟凡良, 高磊, 张莹莹等. 35CrMo钢固体粉末渗铝及渗铝层性能研究 [J]. 石油化工设备, 2010, 39(2): 15
15 Wang Y Q, Zhang Y, Wilson D A. Formation of aluminide coatings on ferritic-martensitic steels by a low-temperature pack cementation process [J]. Surf. Coat. Technol., 2010, 204: 2737
16 Shi Y, He C C, Huang J K, et al. Thermodynamic analysis of the forming of intermetallic compounds on aluminum-steel welding interface [J]. J. Lanzhou. Univ. Technol., 2013, 39(4): 5
石玗, 何翠翠, 黄健康等. 铝钢焊接界面金属间化合物形成的热力学分析 [J]. 兰州理工大学学报, 2013, 39(4): 5
17 Xiang Z D, Datta P K. Kinetics of low-temperature pack aluminide coating formation on alloy steels [J]. Metall. Mater. Trans., 2006, 37A: 3359
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!