Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (8): 561-568    DOI: 10.11901/1005.3093.2024.301
ARTICLES Current Issue | Archive | Adv Search |
Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics
ZHOU Yingying1(), ZHANG Yingxian2, DAN Zhuoya1, DU Xu1, DU Haonan1, ZHEN Enyuan1, LUO Fa3
1.School of Material Engineering, Xi'an Aeronautical University, Xi'an 710077, China
2.Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
3.State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, North-western Polytechnical University, Xi'an 710072, China
Cite this article: 

ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics. Chinese Journal of Materials Research, 2025, 39(8): 561-568.

Download:  HTML  PDF(8571KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

La-doped YFeO3 ceramics, namely Y1-x La x FeO3 (x = 0.1, 0.2, 0.3, 0.4) were prepared by sol-gel method and high-temperature sintering method, then the YFeO3 ceramics before and after La doping was characterized by means of scanning electron microscope (SEM), X-ray diffractometer (XRD), energy dispersive spectrometer (EDS) and network vector analyzer (VNA). So that the effect of the La3+ doping amount on the micromorphology, phase constituents, chemical composition, electromagnetic parameters and microwave absorption performance of Y1-x La x FeO3 were studied. The result shows that as the La doping amount increases, the grain size is gradually decreasing and the grain boundaries are gradually blurred of the ceramics, which may be related to the enhanced preferential orientation of grains and incomplete replacement of the doping atoms. The analysis results confirm that the prepared ceramics consist merely of the YFeO3-type phase, and La3+ can replace the Y3+ position in the YFeO3 crystal. It is clear that an appropriate amount of La doping can effectively increase the impedance matching and attenuation coefficients of YFeO3 ceramic powder. The increase in the dielectric constant may be attributed to the hopping of electrons between Fe3+ and Fe2+ in the case of La doping. The effective absorption broadband (RL ≤ -10 dB) of Y0.7La0.3FeO3 can reach 2.84 GHz.

Key words:  inorganic non-metallic materials      special functional      microwave absorbing materials      doping modification      YFeO3      electromagnetic parameters     
Received:  11 July 2024     
ZTFLH:  TB34  
Fund: National Science and Technology Major Project(J2019-VI-0015-0130);Shaanxi Province Youth Science and Technology New Star Project(2023KJXX-075);Youth Innnovation Team of Shaanxi Province Project(23JP072)
Corresponding Authors:  ZHOU Yingying, Tel: (029)84255622, E-mail: zhouyingying@xaau.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.301     OR     https://www.cjmr.org/EN/Y2025/V39/I8/561

Fig.1  Process of preparing Y1-x La x FeO3 by sol-gel method
SampleY(NO3)3·6H2O / gFe(NO3)3·9H2O / gLa(NO3)2·6H2O / gC6H8O7·H2O / g
x = 029.831.3032.7
x = 0.126.1530.643.2831.88
x = 0.222.6729.896.4131.09
x = 0.319.3629.179.3830.34
x = 0.416.2028.4812.2129.63
Table 1  Raw material quality of each samples
Fig.2  SEM images of Y1-x La x FeO (a) YFeO3, (b) Y0.9La0.1FeO3, (c) Y0.8La0.2FeO3, (d) Y0.7La0.3FeO3, (e) Y0.6La0.4FeO3
Fig.3  XRD patterns of Y1-x La x FeO3 (x = 0, 0.1, 0.2, 0.3, 0.4) (a) 20°-80° diffraction pattern, (b) Magnification of 32°-35° diffraction peak
Y1-x La x FeO3x = 0x = 0.1x = 0.2x = 0.3x = 0.4
2θ / (°)33.6814133.5727433.3010833.2576133.09462
sinθ0.289710.288800.286530.286170.28481
d / nm0.2658870.2667240.2688370.2691760.270461
Table 2  Crystal surface spacing of (121) of Y1-x La x FeO3
Fig.4  SEM images of YFeO3(a), Y0.6La0.4FeO3(c); EDS element distribution map of YFeO3 (b) and Y0.6La0.4FeO3 (d)
Fig.5  Real part (ε′) (a), imaginary part (ε′′) (b), dielectric loss and relative complex permeability (c) and real part (μ′) (d), imaginary part (μ′′) (e), magnetic loss (f) of relative complex permittivity of Y1-x La x FeO3 (x = 0, 0.1, 0.2, 0.3, 0.4)
Fig.6  Reflection loss of Y1-x La x FeO3 at different thicknesses (a, a1) x = 0, (b, b1) x = 0.1, (c, c1) x = 0.2, (d, d1) x = 0.3, (e, e1) x = 0.4, (f) RL value at a thickness of 1.6 mm, (g) Ball rod model of La doped YFeO3 crystal structure
Parameterx = 0x = 0.1x = 0.2x = 0.3x = 0.4
RLmin / dB-18.00-30.61-27.84-35.63-33.55
Thickness / mm1.81.64.21.61.8
Bandwidth (RL -10 dB) / GHz1.181.701.832.841.64
Thickness / mm1.61.61.61.61.6
Table 3  Reflection loss (RL) parameters of Y1-x La x FeO3 (x = 0, 0.1, 0.2, 0.3, 0.4)
Fig.7  Impedance matching coefficient (Z) (a) and attenuation constant (b) of Y1-x La x FeO3 (x = 0.1, 0.2, 0.3, 0.4)
[1] Haq A U, Reddy N S K. A brief review on various high energy absorbing materials [J]. Mater. Today Proc., 2021, 38: 3198
[2] Cao M S, Song W L, Hou Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J]. Carbon, 2010, 48(3): 788
[3] Huang M L, Luo C L, Sun C, et al. Surface structural engineering of carbonyl iron powder for enhancing microwave absorption and anti-oxidation performance [J]. J. Mater. Sci. Technol., 2024, 178: 201
doi: 10.1016/j.jmst.2023.08.052
[4] Chen C, Pan L M, Jiang S C, et al. Electrical conductivity, dielectric and microwave absorption properties of graphene nanosheets/magnesia composites [J]. J. Eur. Ceram. Soc., 2018, 38(4): 1639
[5] Huang L, Cheng L C, Pan S K, et al. Influence of A-site doping barium on structure, magnetic and microwave absorption properties of LaFeO3 ceramics powders [J]. J. Rare Earths, 2022, 40(7): 1106
[6] Coutinho P V, Cunha F, Barrozo P. Structural, vibrational and magnetic properties of the orthoferrites LaFeO3 and YFeO3: a comparative study [J]. Solid State Commun., 2017, 252: 59
[7] Goldschmidt V M. Die Gesetze der Krystallochemie [J]. Naturwissenschaften, 1926, 14: 477
[8] Bharadwaj P S J, Kundu S, Kollipara V S, et al. Structural, optical and magnetic properties of Sm3+ doped yttrium orthoferrite (YFeO3) obtained by sol-gel synthesis route [J]. J. Phys.-Condes. Matter, 2020, 32(3): 035810
[9] Yuan X P, Sun Y, Xu M X. Effect of Gd substitution on the structure and magnetic properties of YFeO3 ceramics [J]. J. Solid State Chem., 2012, 196: 362
[10] Wang M, Cheng L C, Huang L, et al. Effect of Sr doped the YFeO3 rare earth ortho-ferrite on structure, magnetic properties, and microwave absorption performance [J]. Ceram. Int., 2021, 47(24): 34159
doi: 10.1016/j.ceramint.2021.08.325
[11] Zhang Q, Zhu X H, Xu Y H, et al. Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1- x La x FeO3 ceramics [J]. J. Alloy. Compd., 2013, 546: 57
[12] Kumar M, Sati P C, Chhoker S. Electron spin resonance study and improved magnetic and dielectric properties of Gd-Ti co-substituted BiFeO3 ceramics [J]. J. Mater. Sci. Mater. Electron., 2014, 25: 5366
[13] Zubar T I, Fedosyuk V M, Trukhanov A V, et al. Control of growth mechanism of electrodeposited nanocrystalline NiFe films [J]. J. Electrochem. Soc., 2019, 166(6): D173
[14] Deng Y F, Zheng Y, Zhang D F, et al. A novel and facile-to-synthesize three-dimensional honeycomb-like nano-Fe3O4@C composite: electromagnetic wave absorption with wide bandwidth [J]. Carbon, 2020, 169: 118
[15] Selbach S M, Tolchard J R, Fossdal A, et al. Non-linear thermal evolution of the crystal structure and phase transitions of LaFeO3 investigated by high temperature X-ray diffraction [J]. J. Solid State Chem., 2012, 196: 249
[16] Coppens P, Eibschütz M. Determination of the crystal structure of yttrium orthoferrite and refinement of gadolinium orthoferrite [J]. Acta Crystallogr., 1965, 19(4): 524
[17] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallogr., 1976, 32A(5) : 751
[18] Liu M J, Liu Y H, Guo H C, et al. A facile way to enhance microwave absorption properties of rGO and Fe3O4 based composites by multi-layered structure [J]. Composites, 2021, 146A: 106411
[19] Tong G X, Wu W H, Guan J G, et al. Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: microwave electromagnetic and absorbing properties [J]. J. Alloy. Compd., 2011, 509(11): 4320
[20] Ishaque M, Islam M U, Khan M A, et al. Structural, electrical and dielectric properties of yttrium substituted nickel ferrites [J]. Physica, 2010, 405B(6) : 1532
[21] Yang W Y, Zhang Y F, Qiao G Y, et al. Tunable magnetic and microwave absorption properties of Sm1.5Y0.5Fe17- x Si x and their composites [J]. Acta Mater., 2018, 145: 331
[22] Huang L, Cheng L C, Pan S K, et al. Effects of Sr doping on the structure, magnetic properties and microwave absorption properties of LaFeO3 nanoparticles [J]. Ceram. Int., 2020, 46(17): 27352
doi: 10.1016/j.ceramint.2020.07.220
[23] Bi S, Su X J, Li J, et al. High-temperature dielectric properties and microwave absorption abilities of Bi1- x Mg x FeO3 nanoparticles [J]. Ceram. Int., 2017, 43(15): 11815
[24] Zhao J H, Liu L, Jiang R L, et al. Dielectric relaxation and magnetic resonance in microwave absorption performance of Co x Fe3- x O4 (0 ≤ x ≤ 1) nanocrystals [J]. Ceram. Int., 2019, 45(15): 18347
[25] Jazirehpour M, Ebrahimi S A S. Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles [J]. J. Alloy. Compd., 2015, 638: 188
[26] Narang S B, Kaur P, Bahel S, et al. Microwave characterization of Co-Ti substituted barium hexagonal ferrites in X-band [J]. J. Magn. Magn. Mater., 2016, 405: 17
[27] Garg A, Goel S, Dixit A K, et al. Investigation on the effect of neodymium doping on the magnetic, dielectric and microwave absorption properties of strontium hexaferrite particles in X-band [J]. Mater. Chem. Phys., 2021, 257: 123771
[28] Yang C M, Jiang J J, Liu X H, et al. Rare earth ions doped polyaniline/cobalt ferrite nanocomposites via a novel coordination- oxidative polymerization-hydrothermal route: preparation and microwave-absorbing properties [J]. J. Magn. Magn. Mater., 2016, 404: 45
[29] Bora P J, Porwal M, Vinoy K J, et al. Influence of MnO2 decorated Fe nano cauliflowers on microwave absorption and impedance matching of polyvinylbutyral (PVB) matrix [J]. Mater. Res. Express, 2016, 3(9): 095003
[1] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[2] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[3] HAN Leilei, WANG Wentao, WU Yun, CHEN Jiajun, ZHAO Yong. High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method[J]. 材料研究学报, 2025, 39(6): 474-480.
[4] YUAN Xinyu, SHI Fei, LIU Jingxiao, ZHANG Haojie, YANG Dayi, WANG Meiyu, REN Ming. Effect of Er2O3 Addition on Crystallization Behavior and Properties of Lithium Disilicate Glass Ceramics[J]. 材料研究学报, 2025, 39(6): 455-462.
[5] CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2025, 39(4): 272-280.
[6] XU Zhanyuan, ZHAO Wei, SHI Xiangshi, ZHANG Zhenyu, WANG Zhonggang, HAN Yong, FAN Jinglian. Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites[J]. 材料研究学报, 2025, 39(1): 55-62.
[7] DENG Xiaolong, WANG Shanshan, DAI Xinxin, LIU Yi, HUANG Jinzhao. Preparation and Performance of Electrocatalyst of Amorphous FeOOH Covered Layered Double Hydroxide CoFeAl-Heterostructure for Efficient Overall Water Splitting in Alkaline Solution[J]. 材料研究学报, 2025, 39(1): 71-80.
[8] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[9] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[10] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[11] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
[12] WANG Jun, WANG Xuanli, LIU Shuang, SONG Rui, SONG Xiwen. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating[J]. 材料研究学报, 2024, 38(6): 463-470.
[13] GUO Zhinan, ZHAO Qiang, LI Shuying, WANG Junli, XU Lin, SHANG Jianpeng, GUO Yong. Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles[J]. 材料研究学报, 2024, 38(6): 423-429.
[14] WANG Wei, CHANG Wenjuan, LV Fanfan, XIE Zelei, YU Chengcheng. Preparation and Tribological Properties of Fluorinated Boron Nitride Nanosheets Water-based Additive[J]. 材料研究学报, 2024, 38(6): 410-422.
[15] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
No Suggested Reading articles found!