Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (7): 551-560    DOI: 10.11901/1005.3093.2024.431
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin
LIU Zhihua1,2, WANG Mingyue1,2, LI Yijuan1,2, QIU Yifan1,2, LI Xiang3(), SU Weizhao1,2
1.School of Hydraulic and Ocean Engineering, Changsha University of Science & Technology, Changsha 410114, China
2.Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
3.Changsha Drainage Liability Co., Ltd., Changsha 410015, China
Cite this article: 

LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin. Chinese Journal of Materials Research, 2025, 39(7): 551-560.

Download:  HTML  PDF(10301KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel visible-light-driven 1T/2H O-MoS2@S-pCN photocatalyst was synthesized in situ on sulfur-doped g-C3N4 nanosheets (S-pCN) via hydrothermal method with N, N-dimethylformamide (DMF) as solvent. The prepared 1T/2H O-MoS2@S-pCN photocatalyst was characterized by means of XRD, XPS, FT-IR, SEM and UV-vis. The photoelectrochemical properties of the catalyst and the oxidation-reduction behavior of the mixture of ciprofloxacin (CIP) and hexavalent chromium (Cr(VI)) induced by the catalyst were also studied. The results showed that if 15% 1T/2H O-MoS2@S-pCN photocatalyst was introduced into the mixed solution, the removal rate of CIP and Cr(VI) could reach 97.63% within 2 min and 96.2% within 10 min respectively. Furthermore, after five cycle of use, the excellent photocatalytic performance of the catalyst remained unchanged. The excellent performance of the photocatalyst may be attributed to the existence of heterojunctions, the 1T/2H molybdenum disulfide phase with peculiar structure and oxygen doping in the 1T/2H O-MoS2@S-pCN photocatalyst, which could improve its visible light response and effectively inhibit the electron-hole pair recombination. The mechanism related with the removal of CIP and Cr(VI) by this catalyst may be that CIP was oxidized by active substances (h+, e-, ∙O2-), and Cr(VI) was reduced by active substances (e-, ∙O2-).

Key words:  inorganic non-metallic materials      1T/2H O-MoS2@S-pCN      photocatalysis      hexavalent chro-mium      ciprofloxacin     
Received:  22 October 2024     
ZTFLH:  X703.1  
Fund: Youth Teachers Growth Plan Project at Changsha University of Science and Technology(2019QJCZ038)
Corresponding Authors:  LI Xiang, Tel: 13467516628, E-mail: 14410876@qq.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.431     OR     https://www.cjmr.org/EN/Y2025/V39/I7/551

Fig.1  XRD patterns of 1T/2H O-MoS2@S-pCN and S-pCN
Fig.2  XPS analysis of 15% 1T/2H O-MoS2@S-pCN
Fig.3  FT-IR analysis of S-pCN and 1T/2H O-MoS2@S-pCN
Fig.4  SEM images of 1T/2H O-MoS2@S-pCN (a) 5%1T/2H O-MoS2@S-PCN, (b) 10%1T/2H O-MoS2@S-PCN, (c) 15%1T/2H O-MoS2@S-PCN, (d) 20%1T/2H O-MoS2@S-PCN
Fig.5  Element mapping of 15% 1T/2H O-MoS2@S-pCN
Fig.6  UV-vis diffuse reflectance spectra (a) and Tauc plots (b) of S-pCN and 1T/2H O-MoS2@S-pCN
Fig.7  Nyquist plots (a) and transient photocurrent responses (b) of S-pCN and 1T/2H O-MoS2@S-pCN
Fig.8  Mott-Schottky plots of S-pCN和1T/2H O-MoS2@S-pCN
Fig.9  Performance of photocatalytic synergistic treatment of CIP (a) and Cr(VI)(b) by S-pCN and 1T/2H O-MoS2@S-pCN
Fig.10  Cyclic photocatalytic degradation of CIP (a) and Cr(VI) (b) by 15%1T/2H O-MoS2@S-pCN and XRD patterns before and after use of the catalyst (c)
Fig.11  Effect of free radical scavenger on the photo-catalytic degradation of 15% 1T/2H O-MoS2@S-pCN (a) CIP, (b) Cr(VI)
Fig.12  Mechanism of 1T/2H O-MoS2@S-pCN photocatalytic synergistic treatment of CIP and Cr(VI)
[1] Sun J L, Hou Y P, Yu Z B, et al. Visible-light-driven Z-scheme Zn3In2S6/AgBr photocatalyst for boosting simultaneous Cr (VI) reduction and metronidazole oxidation: kinetics, degradation pathways and mechanism [J]. J. Hazard. Mater., 2021, 419: 126543
[2] Phoon B L, Ong C C, Saheed M S M, et al. Conventional and emerging technologies for removal of antibiotics from wastewater [J]. J. Hazard. Mater., 2020, 400: 122961
[3] Li X Q, Chen D Y, Li N J, et al. Efficient reduction of Cr(VI) by a BMO/Bi2S3 heterojunction via synergistic adsorption and photocatalysis under visible light [J]. J. Hazard. Mater., 2020, 400: 123243
[4] Yin H F, Fan T L, Cao Y, et al. Construction of three-dimensional MgIn2S4 nanoflowers/two-dimensional oxygen-doped g-C3N4 nano-sheets direct Z-scheme heterojunctions for efficient Cr(VI) reduction: insight into the role of superoxide radicals [J]. J. Hazard. Mater., 2021, 420: 126567
[5] Fu S, Huang Q, Deng P Y, et al. Novel hierarchical BiOBr-based photocatalyst co-modified with Ag nanoparticles and porous g-C3N4 nanosheets for efficient removal of tetracycline and Cr(VI) [J]. J. Mater. Sci.: Mater. Electron., 2021, 32(10): 13014
[6] Liang Q W, Ploychompoo S, Chen J D, et al. Simultaneous Cr(VI) reduction and bisphenol a degradation by a 3D Z-scheme Bi2S3-BiVO4 graphene aerogel under visible light [J]. Chem. Eng. J., 2020, 384: 123256
[7] Sun X F, Xian T, Di L J, et al. Photocatalytic degradation and reduction properties of AuAg/Bi2O3 composite [J]. Chin. J. Mater. Res., 2020, 34(12): 921
孙小锋, 县 涛, 邸丽景 等. AuAg/Bi2O3复合材料的光催化降解和还原性能 [J]. 材料研究学报, 2020, 34(12): 921
doi: 10.11901/1005.3093.2020.182
[8] Zhao H P, Li G F, Tian F, et al. g-C3N4 surface-decorated Bi2O2CO3 for improved photocatalytic performance: theoretical calculation and photodegradation of antibiotics in actual water matrix [J]. Chem. Eng. J., 2019, 366: 468
[9] Ren F Y, Ouyang E M. Photocatalytic degradation of tetracycline hydrochloride by g-C3N4 modified Bi2O3 [J]. Chin. J. Mater. Res., 2023, 37(8): 633
任富彦, 欧阳二明. g-C3N4改性Bi2O3对盐酸四环素的光催化降解 [J]. 材料研究学报, 2023, 37(8): 633
doi: 10.11901/1005.3093.2022.479
[10] Liu Z H, Yue Y C, Qiu Y F, et al. Preparation of g-C3N4/Ag/BiOBr composite and photocatalytic reduction of nitrate [J]. Chin. J. Mater. Res., 2023, 37(10): 781
刘志华, 岳远超, 丘一帆 等. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮 [J]. 材料研究学报, 2023, 37(10): 781
doi: 10.11901/1005.3093.2022.627
[11] Yang Q, Wei S Q, Zhang L M, et al. Ultrasound-assisted synthesis of BiVO4/C-dots/g-C3N4 Z-scheme heterojunction photocatalysts for degradation of minocycline hydrochloride and Rhodamine B: optimization and mechanism investigation [J]. New J. Chem., 2020, 44: 17641
[12] Wu M Q, Ding T, Cai J M, et al. Coaddition of phosphorus and proton to graphitic carbon nitride for synergistically enhanced visible light photocatalytic degradation and hydrogen evolution [J]. ACS Sustain. Chem. Eng., 2018, 6: 8167
[13] Xia P F, Zhu B C, Yu J G, et al. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction [J]. J. Mater. Chem., 2017, 5A: 3230
[14] Li Z Z, Li H Z, Wang S J, et al. Mesoporous black TiO2/MoS2/Cu2S hierarchical tandem heterojunctions toward optimized photothermal-photocatalytic fuel production [J]. Chem. Eng. J., 2022, 427: 131830
[15] Lin H W, Zhang K, Yang G L, et al. Ultrafine nano 1T-MoS2 monolayers with NiOx as dual co-catalysts over TiO2 photoharvester for efficient photocatalytic hydrogen evolution [J]. Appl. Catal., 2020, 279B: 119387
[16] Nam G H, He Q Y, Wang X Z, et al. In‐plane anisotropic properties of 1T′‐MoS2 layers [J]. Adv. Mater., 2019, 31: 1807764
[17] Xu H, Yi J J, She X J, et al. 2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution [J]. Appl. Catal., 2018, 220B: 379
[18] Sardar W, Ali G, Jiang F C, et al. Systematically designed g-C3N4/rGO/MoS2 nanocomposite for enhanced photocatalytic performance [J]. Curr. Appl. Phys., 2024, 57: 42
[19] Moghimifar Z, Yazdani F, Tabar-Heydar K, et al. Photocatalytic hydrogen evolution under visible light using MoS2/g-C3N4 nano-photocatalysts [J]. Catal. Lett., 2024, 154: 1255
[20] Wang Z N, Lu D Z, Pan J C, et al. Efficient photocatalytic dehydrogenation and synergistic selective oxidation of benzyl alcohol to benzaldehyde for Zn0.5Cd0.5S co-modified with MoS2 nanoflowers and g-C3N4 nanosheets [J]. Appl. Surf. Sci., 2023, 640: 158384
[21] Balakrishnan A, Suryaa K V, Tripathy H, et al. Phosphorylated g-C3N4/sulfur self-doped g-C3N4 homojunction carboxymethyl cellulose beads: An efficient photocatalyst for H2O2 production [J]. J. Colloid Interface Sci., 2024, 663: 1087
[22] Xue Y J, Ji Y H, Wang X Y, et al. Heterostructuring noble-metal-free 1T' phase MoS2 with g-C3N4 hollow nanocages to improve the photocatalytic H2 evolution activity [J]. Green Energy Environ., 2023, 8: 864
[23] Liang Z Q, Meng X F, Xue Y J, et al. Facile preparation of metallic 1T phase molybdenum selenide as cocatalyst coupled with graphitic carbon nitride for enhanced photocatalytic H2 production [J]. J. Colloid Interface Sci., 2021, 598: 172
[24] Mao Z Y, Chen J J, Yang Y F, et al. Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution [J]. ACS Appl. Mater. Interfaces, 2017, 9: 12427
[25] Liu X, Han X L, Liang Z Q, et al. Phosphorous-doped 1T-MoS2 decorated nitrogen-doped g-C3N4 nanosheets for enhanced photocatalytic nitrogen fixation [J]. J. Colloid Interface Sci., 2022, 605: 320
[26] Liang Z, Xue Y, Wang X, et al. Structure engineering of 1T/2H multiphase MoS2 via oxygen incorporation over 2D layered porous g-C3N4 for remarkably enhanced photocatalytic hydrogen evolution [J]. Mater. Today Nano, 2022, 18: 100204
[27] Sun B T, Liang Z Q, Qian Y Y, et al. Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS [J]. ACS Appl. Mater. Interfaces, 2020, 12: 7257
[28] Han Z Z, Ning X F, Yin Z Q, et al. Enhancement of photocatalytic activity for overall water splitting by inhibiting reverse reactions and photocorrosion of C3N4 via modified with TiO2 thin layer [J]. Int. J. Hydrog. Energy, 2024, 59: 856
[29] Peng Y H, Geng M J, Yu J Q, et al. Vacancy-induced 2H@1T MoS2 phase-incorporation on ZnIn2S4 for boosting photocatalytic hydrogen evolution [J]. Appl. Catal., 2021, 298B: 120570
[30] Shi S L, Sun Z X, Hu Y H. Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2 [J]. J. Mater. Chem., 2018, 6A(47) : 23932
[31] Palai A, Panda N R, Sahu D. Novel ZnO blended SnO2 nanocatalysts exhibiting superior degradation of hazardous pollutants and enhanced visible photoemission properties [J]. J. Mol. Struct., 2021, 1244: 131245
[32] Viñes F, Iglesias-Juez A, Illas F, et al. Hydroxyl identification on ZnO by infrared spectroscopies: theory and experiments [J]. J. Phys. Chem., 2014, 118C(3) : 1492
[33] Chen Y L, Su F Y, Xie H Q, et al. One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution [J]. Chem. Eng. J., 2021, 404: 126498
[34] Sahu D, Panda N R. Synthesis of novel nanocomposite of g-C3N4 coated ZnO-MoS2 for energy storage and photocatalytic applications [J]. Chemosphere, 2024, 350: 141014
[35] Wu Z S, He X F, Xue Y T, et al. Cyclodextrins grafted MoS2/g-C3N4 as high-performance photocatalysts for the removal of glyphosate and Cr (VI) from simulated agricultural runoff [J]. Chem. Eng. J., 2020, 399: 125747
[36] Tian S C, Zhang X H, Zhang Z H. Capacitive deionization with MoS2/g-C3N4 electrodes [J]. Desalination, 2020, 479: 114348
[37] Li W Q, Wang Y X, Li Y M, et al. Metal organic framework decorated with molybdenum disulfide for visible-light-driven reduction of hexavalent chromium: Performance and mechanism [J]. J. Clean. Prod., 2021, 318: 128513
[38] Fang Z, Li Q, Su L, et al. Efficient synergy of photocatalysis and adsorption of hexavalent chromium and rhodamine B over Al4SiC4/rGO hybrid photocatalyst under visible-light irradiation [J]. Appl. Catal., 2019, 241B: 548
[39] Sun Y W, Chen C, Qi X, et al. Synthesis of Z-scheme Ag3PO4/MIL-125(Ti) heterojunction and its performance in photocatalytic reduction of Cr(VI) [J]. Chin. J. Mater. Res., 2023, 37(11): 871
孙玉伟, 陈 畴, 祁 昕 等. Ag3PO4/MIL-125(Ti) Z型异质结的构建及其光催化还原Cr(VI)的性能 [J]. 材料研究学报, 2023, 37(11): 871
doi: 10.11901/1005.3093.2022.669
[1] HAN Leilei, WANG Wentao, WU Yun, CHEN Jiajun, ZHAO Yong. High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method[J]. 材料研究学报, 2025, 39(6): 474-480.
[2] YUAN Xinyu, SHI Fei, LIU Jingxiao, ZHANG Haojie, YANG Dayi, WANG Meiyu, REN Ming. Effect of Er2O3 Addition on Crystallization Behavior and Properties of Lithium Disilicate Glass Ceramics[J]. 材料研究学报, 2025, 39(6): 455-462.
[3] LI Ying, NIE Xuetong, QIAN Liguo, ZHU Yiren. Synthesis of Co3O4/ZnO@MG-C3Nx Catalysts and Their Visible Light Degradation of Methylene Blue Performance[J]. 材料研究学报, 2025, 39(4): 241-250.
[4] CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2025, 39(4): 272-280.
[5] XU Zhanyuan, ZHAO Wei, SHI Xiangshi, ZHANG Zhenyu, WANG Zhonggang, HAN Yong, FAN Jinglian. Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites[J]. 材料研究学报, 2025, 39(1): 55-62.
[6] DENG Xiaolong, WANG Shanshan, DAI Xinxin, LIU Yi, HUANG Jinzhao. Preparation and Performance of Electrocatalyst of Amorphous FeOOH Covered Layered Double Hydroxide CoFeAl-Heterostructure for Efficient Overall Water Splitting in Alkaline Solution[J]. 材料研究学报, 2025, 39(1): 71-80.
[7] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[8] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[9] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[10] ZHOU Hui, DU Bin, YANG Pengbin, JIN Dangqin, XIAO Jiali, SHEN Ming, WANG Shengwen. Sodium Gluconate Assisted Synthesis of Nest-like Bi/β-Bi2O3 Heterojunction and Its Visible-light Driven Photocatalytic Activities[J]. 材料研究学报, 2024, 38(7): 549-560.
[11] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
[12] WANG Jun, WANG Xuanli, LIU Shuang, SONG Rui, SONG Xiwen. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating[J]. 材料研究学报, 2024, 38(6): 463-470.
[13] GUO Zhinan, ZHAO Qiang, LI Shuying, WANG Junli, XU Lin, SHANG Jianpeng, GUO Yong. Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles[J]. 材料研究学报, 2024, 38(6): 423-429.
[14] WANG Wei, CHANG Wenjuan, LV Fanfan, XIE Zelei, YU Chengcheng. Preparation and Tribological Properties of Fluorinated Boron Nitride Nanosheets Water-based Additive[J]. 材料研究学报, 2024, 38(6): 410-422.
[15] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
No Suggested Reading articles found!