Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (12): 881-892    DOI: 10.11901/1005.3093.2024.052
ARTICLES Current Issue | Archive | Adv Search |
Preparation and High Temperature Oxidation Resistance of Si Modified Aluminide Coating on Titanium Alloy
LIU Guoqiang1, FENG Changjie1, XIN Li2(), MA Tianyu3, CHANG Hao2, PAN Yuxuan2, ZHU Shenglong2
1 School of Materials Science & Engineering, Shenyang Aerospace University, Shenyang 110136, China
2 Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science &Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

LIU Guoqiang, FENG Changjie, XIN Li, MA Tianyu, CHANG Hao, PAN Yuxuan, ZHU Shenglong. Preparation and High Temperature Oxidation Resistance of Si Modified Aluminide Coating on Titanium Alloy. Chinese Journal of Materials Research, 2024, 38(12): 881-892.

Download:  HTML  PDF(28056KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al-Si coatings with different Si content were deposited on the surface of Ti-alloy Ti-6Al-4V by multi-arc ion plating, then which were subjected to vacuum heat treatment at 900oC for 1 h and thereby Si-modified aluminide coatings with gradually decreasing Al-content along the normal of coating inwards were acquired The aluminide coatings exhibited layered structure and were mainly composed of Ti-Al intermetallics including TiAl3, TiAl2, TiAl and precipitates including Ti5Si3 and Ti5Si4, and certain amount of Si atoms were dissolved in the TiAl3 as substitutes and formed Ti(Al, Si)3. The Si modified aluminide coatings showed excellent cyclic oxidation resistance at 650oC. It is worthy to note that at 750oC, the cyclic oxidation resistance of the aluminide coatings increased with the increasing of Si content.

Key words:  metallic materials      Si modified aluminide coating      titanium alloy      high temperature oxidation      diffusion     
Received:  22 January 2024     
ZTFLH:  TG156  
Fund: National Natural Science Foundation of China(52371085);Liaoning Revitalization Talents Program(XLYC2002031)
Corresponding Authors:  XIN Li, Tel: 13664116162, E-mail: xli@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.052     OR     https://www.cjmr.org/EN/Y2024/V38/I12/881

Fig.1  XRD patterns of 0Si, 5.2Si, 12.5Si and 25.7Si coatings
Fig.2  SEM surface and cross-sectional morphologies and EDS cross-sectional elemental maps of 0Si, 5.2Si, 12.5Si and 25.7Si coatings (a) 0Si, (b) 5.2Si, (c) 12.5Si, (d) 25.7Si
ZonesAlSiTiV
174.72-24.271.01
266.23-32.671.10
354.83-43.321.85
425.21-72.362.43
564.068.0126.321.61
665.445.8427.061.66
760.573.6434.091.70
852.091.7544.062.10
924.391.0072.092.52
1064.039.8724.691.41
1168.125.7825.260.84
1249.5511.3136.922.22
1346.532.9748.851.65
1427.480.9669.322.24
1564.479.3125.280.94
1660.8610.3127.181.65
1738.4723.6936.990.85
1811.5136.2849.572.64
1918.257.3972.252.11
Table 1  Compositions of the areas marked by 1~19 in Fig.2 determined by EDS (atomic fraction, %)
Reaction equationΔGθ / kJ·mol-1No.
1/3Ti + Al = 1/3TiAl3-36.039(1)
Ti + Al = TiAl-62.408(2)
5/3Ti + Si = 1/3Ti5Si3-196.733(3)
Ti + Si = TiSi-129.430(4)
1/2Ti + Si = 1/2TiSi2-81.628(5)
Table 2  Standard Gibbs free energy changes of the reactions possibly took place during annealing at 900oC (ΔGθ )
Fig.3  Cyclic oxidation kinetic curves of TC4 alloy, 0Si, 5.2Si, 12.5Si, and 25.7Si coatings at 650oC
Fig.4  Pictures of the samples after cyclic oxidation at 650oC (a) TC4 for100 cycles; (b) 0Si, (c) 5.2Si, (d) 12.5Si and (e) 25.7Si coatings for 300 cycles
Fig.5  XRD patterns of 0Si, 5.2Si, 12.5Si and 25.7Si coat-ings after cyclic oxidation at 650oC for 300 cycles
Fig.6  SEM surface and cross-sectional morphologies of the coatings after oxidation at 650oC for 300 cycles (a) 0Si, (b) 5.2Si, (c) 12.5Si, (d) 25.7Si
CoatingsOAlSiTiV
0Si49.9534.46-14.531.06
5.2Si54.1623.913.6417.101.19
12.5Si56.1720.136.3816.500.82
25.7Si55.7218.797.5916.960.94
Table 3  Composition of surface oxide scale of 0Si, 5.2Si, 12.5Si and 25.7Si coating after cyclic oxidation at 650oC for 300 cycles by EDS (atomic fraction, %)
Fig.7  Cyclic oxidation kinetic curves of TC4 alloy, 0Si, 5.2Si, 12.5Si, and 25.7Si coatings at 750oC
Fig.8  Pictures of the samples after cyclic oxidation at 750℃ (a) TC4 for 80 cycles; (b) 0Si and (c) 5.2Si coatings for180 cycles; (d) 12.5Si and (e) 25.7Si coatings for 300 cycles
Fig.9  XRD patterns of 0Si, 5.2Si, 12.5Si and 25.7Si coatings after oxidation at 750oC for different time (a) 10°~90°, (b) 15°~34°
Fig.10  Surface and cross-sectional morphologies of the coatings after cyclic oxidation at 750oC (a) 0Si and (b) 5.2Si for 180 cycles; (c) 12.5Si and (d) 25.7Si for 300 cycles (IDZ—inter diffusion zone)
Fig.11  EPMA cross-sectional elemental maps of the coatings after oxidation at 750oC for 300 cycles (a) 12.5Si, (b) 25.7Si
ZonesOAlSiTiV
141.2919.09-37.332.29
243.5237.20-18.520.76
35.3532.88-57.833.94
4-23.19-74.182.63
565.358.19-24.841.62
663.6528.75-6.940.66
715.5834.470.8046.592.56
8-20.91-76.372.72
961.2811.782.6523.211.08
1061.8019.314.9413.160.79
11-38.314.6354.172.89
12-21.970.5475.152.34
1365.7712.180.3520.371.33
1464.2922.594.138.690.30
15-42.426.1049.142.34
16-8.9431.6654.115.29
17-13.8519.9562.243.96
18-20.381.6275.772.23
Table 4  Compositions of the areas marked by 1~18 in Fig.10 determined by EDS (atomic fraction, %)
1 Peters M, Kumpfert J, Ward C H, et al. Titanium alloys for aerospace applications [J]. Adv. Eng. Mater., 2003, 5(6): 419
2 Veiga C, Davim J P, Loureiro A J R. Properties and applications of titanium alloys: a brief review [J]. Rev. Adv. Mater. Sci., 2012, 32: 133
3 Pushp P, Dasharath S M, Arati C. Classification and applications of titanium and its alloys [J]. Mater. Today: Proc., 2022, 54: 537
4 Cui C X, Hu B M, Zhao L C, et al. Titanium alloy production technology, market prospects and industry development [J]. Mater. Des., 2011, 32(3): 1684
5 Vaché N, Cadoret Y, Dod B, et al. Modeling the oxidation kinetics of titanium alloys: review, method and application to Ti-64 and Ti-6242s alloys [J]. Corros. Sci., 2021, 178: 109041
6 Berthaud M, Popa I, Chassagnon R, et al. Study of titanium alloy Ti6242S oxidation behaviour in air at 560 oC: effect of oxygen dissolution on lattice parameters [J]. Corros. Sci., 2020, 164: 108049
7 Satko D P, Shaffer J B, Tiley J S, et al. Effect of microstructure on oxygen rich layer evolution and its impact on fatigue life during high-temperature application of α/β titanium [J]. Acta Mater., 2016, 107: 377
8 Ebach-Stahl A, Eilers C, Laska N, et al. Cyclic oxidation behaviour of the titanium alloys Ti-6242 and Ti-17 with Ti-Al-Cr-Y coatings at 600 and 700 oC in air [J]. Surf. Coat. Technol., 2013, 223: 24
9 Chaia N, Cossu C M, Parrisch C J, et al. Growth kinetics of TiAl3 diffusion coating by pack cementation on beta 21-S [J]. J. Phase Equilib. Diffus., 2020, 41(3): 181
10 Das D K, Alam Z. Cyclic oxidation behaviour of aluminide coatings on Ti-base alloy IMI-834 at 750 oC [J]. Surf. Coat. Technol., 2006, 201: 3406
11 Oukati Sadeq F, Sharifitabar M, Shafiee Afarani M. Synthesis of Ti-Si-Al coatings on the surface of Ti-6Al-4V alloy via hot dip siliconizing route [J]. Surf. Coat. Technol., 2018, 337: 349
12 Alam Z, Das D K. Effect of cracking in diffusion aluminide coatings on their cyclic oxidation performance on Ti-based IMI-834 alloy [J]. Corros. Sci., 2009, 51(6): 1405
13 McMordie B G. Oxidation resistance of slurry aluminides on high temperature titanium alloys [J]. Surf. Coat. Technol., 1991, 49(1-3): 18
14 Chen C, Feng X M, Shen Y F. Oxidation behavior of a high Si content Al-Si composite coating fabricated on Ti-6Al-4V substrate by mechanical alloying method [J]. J. Alloys Compd., 2017, 701: 27
15 Cammarota G P, Casagrande A, Sambogna G. Effect of Ni, Si and Cr in the structural formation of diffusion aluminide coatings on commercial-purity titanium [J]. Surf. Coat. Technol., 2006, 201(1-2): 230
16 Yan W, Sun F J, Wang Q J, et al. Hot corrosion behavior of arc-ion plating Ti-Al-Cr(Si,Y) coatings on Ti60 alloy [J]. Acta Metall. Sin., 2009, 45(10): 1171
闫 伟, 孙凤久, 王清江 等. Ti60合金表面电弧离子镀Ti-Al-Cr(Si, Y)防护涂层的热腐蚀行为 [J]. 金属学报, 2009, 45(10): 1171
17 Li Z H, Chai L J, Qi L, et al. Laser-cladded Al-Cr-Ti ternary alloy coatings on Ti-4Al-2V alloy: specific microstructure and enhanced surface performance [J]. Surf. Coat. Technol., 2023, 452: 129073
18 Feng Y, Chen Z Y, Jiang S M, et al. Effect of a NiCrAlSiY coating on cyclic oxidation and room temperature tensile properties of Ti65 alloy plate [J]. Chin. J. Mater. Res., 2023, 37(7): 523
doi: 10.11901/1005.3093.2022.145
冯 叶, 陈志勇, 姜肃猛 等. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响 [J]. 材料研究学报, 2023, 37(7): 523
19 Zhang M M, Cheng Y X, Xin L, et al. Cyclic oxidation behaviour of Ti/TiAlN composite multilayer coatings deposited on titanium alloy [J]. Corros. Sci., 2020, 166: 108476
20 Li C G, Wang Y, Tian W, et al. Nanostructured Al2O3-TiO2 coatings for high-temperature protection of titanium alloy during ablation [J]. Mater. Charact., 2010, 61: 796
21 Xiao Z Q, Tan F T, Wang W, et al. Oxidation protection of commercial-purity titanium by Na2O-CaO-SiO2 and Na2O-CaO-Al2O3-SiO2 glass-ceramic coatings [J]. Ceram. Int., 2015, 41(1): 325
22 Yang Y F, Jiang C Y, Yao H R, et al. Cyclic oxidation and rumpling behaviour of single phase β-(Ni, Pt)Al coatings with different thickness of initial Pt plating [J]. Corros. Sci., 2016, 111: 162
23 Zhu G L, Shu D, Dai Y B, et al. First principles study on substitution behaviour of Si in TiAl3 [J]. Acta Phys. Sin., 2009, 58(suppl.1) : 210
祝国梁, 疏 达, 戴永兵 等. Si在TiAl3中取代行为的第一性原理研究 [J]. 物理学报, 2009, 58(): 210
24 Bulanova M, Tretyachenko L, Golovkova M, et al. Phase equilibria in the α-Ti-Al-Si region of the Ti-Si-Al system [J]. J. Phase Equilib. Diffus., 2004, 25(3): 209
25 Zhang K, Xin L, Lu Y L, et al. Improving oxidation resistance of γ-TiAl based alloy by depositing TiAlSiN coating: effects of silicon [J]. Corros. Sci., 2021, 179: 109151
26 Rao K P, Zhou J B. Characterization of mechanically alloyed Ti-Al-Si powder blends and their subsequent thermal stability [J]. Mater. Sci. Eng., 2002, 338A: 282
27 Li Y, Gu Q F, Luo Q, et al. Thermodynamic investigation on phase formation in the Al-Si rich region of Al-Si-Ti system [J]. Mater. Des., 2016, 102: 78
28 Kahrobaee Z, Palm M. Experimental investigation of Ti-Al-Si phase equilibria at 800~1200oC [J]. J. Alloys Compd., 2022, 924: 166223
29 Sujata M, Bhargava S, Sangal S. On the formation of TiAl3 during reaction between solid Ti and liquid Al [J]. J. Mater. Sci. Lett., 1997, 16: 1175
30 Li J. Effect of Si in al alloy on intermetallic compounds growth behavior during reaction between solid Ti and liquid Al [D]. Harbin: Harbin Institute of Technology, 2012
李 晶. Si对Ti/Al固液界面金属间化合物生长行为的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2012
31 Hu X Y, Li F G, Shi D M, et al. A design of self-generated Ti-Al-Si gradient coatings on Ti-6Al-4V alloy based on silicon concentration gradient [J]. J. Alloys Compd., 2020, 830: 154670
32 Chaze A M, Coddet C. Influence of silicon on the oxidation of titanium between 550 and 700 oC [J]. Oxid. Met., 1987, 27(1-2): 1
33 Vojtěch D, Bártová B, Kubatı́k T. High temperature oxidation of titanium-silicon alloys [J]. Mater. Sci. Eng., 2003, 361A(1-2) : 50
34 Ikuma Y, Shimada E, Sakano S, et al. Oxygen self-diffusion in cylindrical single-crystal mullite [J]. J. Electrochem. Soc., 1999, 146(12): 4672
35 Fielitz P, Borchardt G, Schmücker M, et al. Oxygen grain-boundary diffusion in polycrystalline mullite ceramics [J]. J. Am. Ceram. Soc., 2004, 87: 2232
36 Gorai P, Hollister A G, Pangan-Okimoto K, et al. Kinetics of oxygen interstitial injection and lattice exchange in rutile TiO2 [J]. Appl. Phys. Lett., 2014, 104: 191602
37 Maeda K, Suzuki S, Ueda K, et al. Experimental and theoretical study of the effect of Si on the oxidative behavior of Ti-6Al-4V alloys [J]. J. Alloys Compd., 2019, 776: 519
[1] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
[3] WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. 材料研究学报, 2024, 38(9): 701-710.
[4] SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide[J]. 材料研究学报, 2024, 38(9): 680-690.
[5] CEN Yaodong, JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui. Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel[J]. 材料研究学报, 2024, 38(9): 711-720.
[6] LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. 材料研究学报, 2024, 38(8): 621-631.
[7] LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. 材料研究学报, 2024, 38(8): 561-568.
[8] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[9] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[11] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[12] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[13] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[14] WANG Jinlong, WANG Huiming, LI Yingju, ZHANG Hongyi, LV Xiaoren. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. 材料研究学报, 2024, 38(7): 481-489.
[15] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
No Suggested Reading articles found!