Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (11): 801-810    DOI: 10.11901/1005.3093.2023.577
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Low Activity Fe-Al Coating on 316L Steel Surface
CHEN Jihong1,3, WANG Yongli2,3(), XIONG Liangyin2,3, SONG Lixin1
1 College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

CHEN Jihong, WANG Yongli, XIONG Liangyin, SONG Lixin. Preparation of Low Activity Fe-Al Coating on 316L Steel Surface. Chinese Journal of Materials Research, 2024, 38(11): 801-810.

Download:  HTML  PDF(12150KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Fe-Al coatings were prepared on the surface of 316L stainless steel plate and the inner surface of 316L tubes by pack cementation method. The effect of aluminizing agent ratio, temperature and time on the microstructure and phase composition of the Fe-Al coatings were investigated by Scanning electron microscopy (SEM), energy spectrum analysis (EDS) and X-ray diffractometer (XRD). The growth rate of coatings was measured for the planar samples and the inner wall of the tubes. The results showed that uniform Fe-Al coatings with good coherence to the substrate were obtained after aluminizing at 700~800oC for 6 h. The higher growth rate of coating was achieved in the aluminizing agent with Fe-Al powder content of 75%. The aluminizing temperature has little effect on the phase compositions of the coatings obtained in the range of 700~800oC. The prepared Fe-Al coating show double-layered structure, with the outer Al-rich layer mainly composed of FeAl toughness phase, and the inner elemental diffusion layer mainly composed of Fe3Al phase. With the increasing time, the element diffusion is enhanced in the coating, which leads to dense and smooth coating surface. On the other hand, due to the enhanced element diffusion, some pores with 1-2μm diameter appears in the region near the interface between Al-rich layer and diffusion layer and the number of pores is increasing with time. The Fe-Al coating without pores at the interface of the 316L substrate was prepared on inner surface of 316L stainless steel tubes in the temperature range of 700~800oC. After the same aluminizing process, the thickness of the coating grown on the inner tube surface is about 1.1~2.1 times of that on the plate surface. It can be explained by the smaller nuclei volume of coating nucleated on a curved surface than that on a flat surface, which result in the higher nucleation efficiency and faster growth rate of coating on the inner surface of tubes.

Key words:  surface and interface in the materials      Fe-Al coating      pack cementation method      316L steel      nucleation efficiency      pipe wall coating     
Received:  04 December 2023     
ZTFLH:  O484  
Fund: LingChuang Research Project of China National Nuclear Corporation
Corresponding Authors:  WANG Yongli, Tel: 15909820506, E-mail: wangyongli@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.577     OR     https://www.cjmr.org/EN/Y2024/V38/I11/801

ElementFeCrNiMoMnTotal
%68.9317.2110.302.331.23100
Table 1  Chemical composition of 316L stainless steel (%, mass fraction)
Fe-AlAl2O3NH4Cl
P165323
P275223
P385123
Table 2  Composition of the three aluminizing agent ratios (%, mass fraction)
Fig.1  Surface and cross-sectional morphology of Fe-Al coatings prepared with different aluminizing agent ratios (a, e) P1; (b, d) P2; (c, f) P3
Fig.2  XRD spectra of Fe-Al coatings prepared with different ratios of aluminizing agents
Fig.3  Energy spectrum of different depth
SpectrogramAlCrFeNi
135.187.0153.384.44
210.3121.2255.6412.83
Table 3  EDS results for spectrogram 1 and spectrogram 2 (%, mass fraction)
Fig.4  SEM images of surface morphology of Fe-Al coatings prepared at different aluminizing temperatures (a) 700oC; (b) 750oC; (c) 800oC
Fig.5  BSE pictures and energy spectrum analysis results of the cross-sectional morphology of Fe-Al coatings aluminized at different aluminizing temperatures for 6 h (a, d) 700oC; (b, e) 750oC; (c, f) 800oC
Fig.6  XRD spectrum of Fe-Al coatings prepared at different aluminizing temperatures
Temperature / oC700750800
Diffusion coefficient / m2·s-14.63 × 10-177.60 × 10-162.40 × 10-15
Table 4  Diffusion coefficients of Al atoms at different temperatures (D)
Fig.7  SEM images of surface morphology of Fe-Al coatings prepared at different aluminizing times (a) 3 h; (b) 6 h; (c) 9 h
Fig.8  BSE pictures and energy spectrum analysis results of the cross-sectional morphology of Fe-Al coatings aluminied at 800oC for different times (a, d) 3 h; (b, e) 6 h; (c, f) 9 h
Fig.9  XRD spectrum of Fe-Al coatings aluminized for different times
Fig.10  BSE images of the cross-sectional morphology of Fe-Al coatings aluminized on the inner wall of 316L tubes at different temperature for different time (a) 700oC/6 h; (b) 750oC/6 h; (c) 800oC/3 h; (d) 800oC/6 h; (e) 800oC/9 h
Fig.11  Fitted plots of Fe-Al coating thickness and temperature (a) and time (b) for 316L stainless steel planar sample and tube sample
Fig.12  Nucleation volume at solid impurity surface of different shape (a) concave surface; (b) planar surface; (c) convex surface
1 Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61(3): 735
2 Gi K, Sano F, Akimoto K, et al. Potential contribution of fusion power generation to low-carbon development under the Paris Agreement and associated uncertainties [J]. Energy Strat. Rev., 2020, 27: 1
3 Luo L M, Liu Y L, Liu D G, et al. Preparation technologies and performance studies of tritium permeation barriers for future nuclear fusion reactors [J]. Surf. Coat. Technol., 2020, 403: 1
4 Ushids H, Katayama K, Matsuura H, et al. Tritium permeation behavior through pyrolytic carbon in tritium production using high-temperature gas-cooled reactor for fusion reactors [J]. Nucl. Mater. Energy., 2016, 9:524
5 Zhang G K, Xiang X, Yang F L, et al. Current research and development activities on tritium permeation barriers for fusion reactors in China [J]. Nucl. Chem. Radiochem., 2015, 37(5): 310
张桂凯, 向 鑫, 杨飞龙 等. 我国聚变堆结构材料表面阻氚涂层的研究进展 [J]. 核化学与放射化学, 2015, 37(5): 310
doi: 10.7538/hhx.2015.37.05.0310
6 Chikada T, Tanaka T, Yuyama K, et al. Crystallization and deuterium permeation behaviors of yttrium oxide coating prepared by metal organic decomposition [J]. Nucl. Mater. Energy., 2016, 9: 529
7 Mochizuki J, Horikoshi S, Oya Y, et al. Deuterium permeation behavior of tritium permeation barrier coating containing carbide nanoparticles [J]. Fusion Eng. Des., 2017, 124: 1073
8 Yang F, Xiang X, Lu G, et al. Tritium permeation characterization of Al2O3/FeAl coatings as tritium permeation barriers on 321 type stainless steel containers [J]. J. Nucl. Mater., 2016, 478: 144
9 Wu Y. Design status and development strategy of China liquid lithium-lead blankets and related material technology [J]. J. Nucl. Mater., 2007, 367-370: 1410
10 Zhan Q, Yang H G, Zhao W W, et al. Grazing X-ray diffraction of surface oxide films on Fe-Al/ Al2O3 composite coating [J]. Nucl. Energy Sci. Technol., 2012, 46(S1): 517
占 勤, 杨洪广, 赵崴巍 等. Fe-Al/ Al2O3涂层表面氧化膜的掠入射X射线衍射研究 [J]. 原子能科学技术, 2012, 46(S1): 517
11 Zheng G, Carpenter D, Dolan K, et al. Experimental investigation of alumina coating as tritium permeation barrier for molten salt nuclear reactors [J]. Nucl. Eng. Des., 2019, 353: 1
12 Xiang X, Zhang G K, Wang X L, et al. Review on preparation techniques of FeAl/Al2O3 composite tritium permeation barriers [J]. Rare Met. Mater. Eng., 2016, 45(2): 522
13 Zhang H, Zhou H, Li N, et al. Effect of ce on microstruvture and properties of hot dipaluminized tritium permeation barrier [J]. Acta Metall. Sin., 2011, 47(12): 1527
14 Huang J, Xie H, Luo L M, et al. Preparation and properties of FeAl/Al2O3 composite tritium permeation barrier coating on surface of 316L stainless steel [J]. Surf. Coat. Technol., 2020, 383: 1
15 Yuan X M, Yang H G, Zhao W W, et al. Study on pack cementation process for preparation of low activity pack aluminizing layer on RAFM steel [J]. Mater. Rep., 2015, 29(S1): 66
袁晓明, 杨洪广, 赵崴巍 等. RAFM钢表面粉末包埋法制备低活性渗铝层工艺研究 [J]. 材料导报, 2015, 29(S1): 66
16 Dai Y N. Binary Alloy Phase Diagrams [M]. Beijing: Science Press, 2009
戴永年. 二元合金相图集 [M]. 北京: 科学出版社, 2009
17 Yang Y, Zhang F, He J, et al. Microstructure, growth kinetics and mechanical properties of interface layer for roll bonded aluminum-steel clad sheet annealed under argon gas protection [J]. Vacuum., 2018, 151: 1
18 Chen W Q, La P Q, Luo G, et al. Review of preparation and corrosion resistance of Fe-Al coatings in molten salt [J]. Foundry Technol., 2022, 43(11): 948
陈维铅, 喇培清, 罗 刚 等. Fe-Al涂层制备及耐熔盐腐蚀性研究 [J]. 铸造技术, 2022, 43(11): 948
19 Wang T, Pu J, Bo C, et al. Sol-gel prepared Al2O3 coatings for the application as tritium permeation barrier [J]. Fusion Eng. Des., 2010, 85(7): 1068
20 Li L F, Shen J N, Li M C, et al. Pack aluminizing process and characterization of aluminizen layer on stainless steels [J]. Corros. Sci. Prot. Technol., 2004, (2): 79
李凌峰, 沈嘉年, 李谋成 等. 不锈钢表面粉末包埋渗铝过程及渗铝层表征 [J]. 腐蚀科学与防护技术, 2004, (2): 79
21 Huang Z J, Jiang Z Q, Dong W B, et al. High-temperature corrosion resistance of composite coatings prepared by microarc oxidation combined with pack cementation aluminum [J]. Mater. Eng., 2018, 46(1): 44
黄祖江, 蒋智秋, 董婉冰 等. 微弧氧化及包埋渗铝法制备的复合涂层高温抗蚀性能 [J]. 材料工程, 2018, 46(1): 44
doi: 10.11868/j.issn.1001-4381.2016.000617
22 Xiang Z D, Datta P K. Formation of aluminide coatings on low alloy steels at 650 degrees C by pack cementation process [J]. Mater. Sci. Technol., 2004, 20(10): 1297
23 Choi W J, Lee H, Park C W, et al. High temperature oxidation behavior of molybdenum borides by silicon pack cementation process [J]. Int. J. Refract. Met. Hard Mater., 2021, 100: 1
24 Nouri S, Azadeh M. Microstructural investigation of the coatings prepared by simultsneous aluminizing and siliconizing process on gamma-TiAl [J]. J. Min. Metall. Sect. B-Metall., 2019, 55(2): 217
25 Hu Y, Xiang Z. Corrosion resistance and application of martensitic stainless steels with an external Cr-N coating layer formed by pack cementation process [J]. Surf. Technol., 2019, 48(6): 282
26 Bateni M R, Shaw S, Wei P, et al. Deposition of Fe-Al intermetallic coatings on solid oxide fuel cell (SOFC) interconnects by pack cementation [J]. Mater. Manuf. Processes., 2009, 24(6): 626
27 Yang H G, Zhan Q, Zhao W W, et al. Study of an iron-aluminide and alumina tritium barrier coating [J]. J. Nucl. Mater., 2011, 417(1): 1237
28 Xie H, Yu L X, Ma R N, et al. A study of pack aluminizing technology on the surface of GCr15 steel [J]. J. Hebei Univ. Technol., 2017, 46(6): 53
谢 欢, 于立新, 马瑞娜 等. GCr15钢表面粉末包埋渗铝工艺研究 [J]. 河北工业大学学报, 2017, 46(6): 53
29 Rohr V, Schütze M, Fortuna E, et al. Development of novel diffusion coatings for 9-12%Cr ferritic-martensitic steels [J]. Mater. Corros., 2005, 56(12): 874
30 Bates B L, Wang Y Q, Zhang Y, et al. Formation and oxidation performance of low-temperature pack aluminide coatings on ferritic-martensitic steels [J]. Surf. Coat. Technol., 2009, 204(6): 766
31 Ke S R, Wang J, Zhu C Y, et al. On the selection of halide activators for the formation of hybrid Ni-aluminide/Ni coatings on creep resistant ferritic steels by low temperature pack cementation process [J]. Mater. Chem. Phys., 2015, 162: 1
32 Forcey K S, Ross D K, Simpson J C B, et al. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications [J]. J. Nucl. Mater., 1988, 160(2): 117
33 Perujo A, Forcey K S. Tritium permeation barriers for fusion technology [J]. FFusion Eng. Des., 1995, 28: 252
34 Yuan X M, Yang H G, Zhao W W, et al. The pack-cementation process of iron-aluminide coating on china low activation martensitic and 316L austenitic stainless steel [J]. Fusion Sci. Technol., 2011, 60(3): 1065
35 Zhang J X, Xu X Y, Song J F, et al. Research progress of pack cementation aluminizing [J]. Hot Work. Technol., 2018, 47(4): 22
张冀翔, 徐修炎, 宋健斐 等. 粉末包埋渗铝研究进展 [J]. 热加工工艺, 2018, 47(4): 22
36 Majumdar S, Paul B, Kain V, et al. Formation of Al2O3/Fe-Al layers on SS 316 surface by pack aluminizing and heat treatment[J]. Mater. Chem. Phys., 2017, 190: 31
37 Li N, Chen Y, Chen X, et al. Preparation method and diffusion mechanism of Fe-Al coating on Q235 low carbon steel by pack aluminizing [J]. Chin. J. Mater. Res., 2021, 35(8): 572
doi: 10.11901/1005.3093.2020.449
38 Bahadur A, Sharma T L, Parida N, et al. Structure-property correlation in Al-diffusion coated steels [J]. J. Mater. Sci., 1993, 28(19): 5375
39 Yener T. Low temperature aluminising of Fe-Cr-Ni super alloy by pack cementation [J]. Vacuum, 2019, 162:114
40 Rastkar A R, Rezvani N. The effects of processing time on the microstructure and composition of plasma pack-aluminized and oxidized surface layers on low carbon steel [J]. Metall. Mater. Trans. A, 2015, 46A(9) : 4132
41 Xiang Z D, Datta P K. Low temperature aluminisation of alloy steels by pack cementation process [J]. Mater. Sci. Technol., 2006, 22(10): 1177
42 Lin T, Shao H P, Zhang W W. Preparation of Oxidation Resistance Coating of Silicide by Pack Cementation [M]. France: Atlantis Press, 2015
43 Wang X, Fan Y Z, Zhao X, et al. Process and high-temperature oxidation resistance of pack-aluminized layers on cast iron [J]. Metals., 2019, 9(6): 1
[1] HUANG Di, NIU Yunsong, LI Shuai, DONG Zhihong, BAO Zebin, ZHU Shenglong. Thermal Cycling and Flame Thermal Shocking Failure Mechanism of Tetragonal Yttria-stabilized Zirconia TBCs Prepared on High Temperature Alloys by Suspension Plasma Spraying[J]. 材料研究学报, 2024, 38(9): 691-700.
[2] LI Yuanyuan, LIANG Jian, XIONG Ziliu, MIAO Bin, TIAN Xiugang, QI Jianjun, ZHENG Shijian. Influence of Alloying Elements on Interfacial Layer- and Galvanized Layer-Structure of New Hot-dip Galvanized Dual-phase Steel[J]. 材料研究学报, 2024, 38(6): 446-452.
[3] ZHANG Jia, GAO Minghao, LUAN Shengjia, XU Na, CHANG Hui, DENG Yuting, HOU Wanliang, CHANG Xinchun. Effect of Feedstock Powders on Microstructure and Properties of CoNiCrAlY Coatings[J]. 材料研究学报, 2024, 38(5): 347-355.
[4] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[5] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[6] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[8] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[9] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[10] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[11] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[12] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[13] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[14] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[15] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
No Suggested Reading articles found!