Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (9): 691-700    DOI: 10.11901/1005.3093.2023.471
ARTICLES Current Issue | Archive | Adv Search |
Thermal Cycling and Flame Thermal Shocking Failure Mechanism of Tetragonal Yttria-stabilized Zirconia TBCs Prepared on High Temperature Alloys by Suspension Plasma Spraying
HUANG Di1,2, NIU Yunsong1,3, LI Shuai1, DONG Zhihong1,2, BAO Zebin1,2(), ZHU Shenglong1,2
1 Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 University of Science and Technology Beijing, State Key Laboratory for Advanced Metals and Materials, Beijing 100083, China
Cite this article: 

HUANG Di, NIU Yunsong, LI Shuai, DONG Zhihong, BAO Zebin, ZHU Shenglong. Thermal Cycling and Flame Thermal Shocking Failure Mechanism of Tetragonal Yttria-stabilized Zirconia TBCs Prepared on High Temperature Alloys by Suspension Plasma Spraying. Chinese Journal of Materials Research, 2024, 38(9): 691-700.

Download:  HTML  PDF(14382KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this paper, thermal barrier ceramic coatings (TBCs) with columnar-like structure were prepared on high temperature alloys N5 and DZ411 by suspension plasma spraying, using tetragonal yttria stabilization zirconia (YSZ) powder as raw material. The failure behavior of TBCs was assessed by thermal cycling test (i.e. furnace heating to 1100oC for 60 min. and then air cooling for 10 min. as one cycle), and flame thermal shocking test (i.e. quick flame heating to 1300oC and then compressed air cooling to below 300oC as one cycle) respectively. The results show that the coatings have excellent resistance to thermal cycling and flame thermal shocking, and the phase composition of ceramic coatings maintains tetragonal crystallographic structure after all the tests. The failure mechanism of TBCs in thermal cycling and flame thermal shocking is different. Delamination failure occurs at the interface between the ceramic layer and thermal grown oxides (TGO) during thermal cycling, caused by the mismatch of different thermal expansion coefficient. Besides, the main failure source of TBCs during flame thermal shocking is severe internal oxidation of bond coat due to the formation of hot channel, which is converted from gaps between columnar.

Key words:  surface and interface in the materials      suspension plasma spraying      thermal barrier coatings      thermal cycle      thermal shock      failure mechanism     
Received:  19 September 2023     
ZTFLH:  TG174.45  
Fund: National Natural Science Foundation of China(51671202, 52301116);Fundamental Science Center for Aviation and Gas Turbine Engines(P2021-A-IV-002-001);National Science and Technology Major Project(J2019-IV-0006-0074);the Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-2-2)
Corresponding Authors:  BAO Zebin, Tel: (024)23881473, E-mail: zbbao@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.471     OR     https://www.cjmr.org/EN/Y2024/V38/I9/691

CrCoWMoTaTiAlReCNi
N577.551.56.5-6.23MinorBal.
DZ41113.89.64.01.42.85.13.2-MinorBal.
Table 1  Chemical composition of N5 and DZ411 superalloy (mass fraction, %)
Total gas flowAtmosphere composition / %, volume fractionSpraying powerSpraying distanceTorch speed
ArN2H2
300 L/min661717131 kW110 mm500 mm/s
Table 2  Parameters of suspension plasma spraying
Fig.1  Surface microstructure (a) and morphology (b) of the as-sprayed ceramic layer and high-magnification images in column (c, d)
Fig.2  XRD pattern of as-sprayed ceramic layer
Fig.3  Cross-section images of TC (a), intact TGO region (b) and inter-column high-magnification (c, d) after failure at 1100oC thermal cycling
Fig.4  Line scanning results of TGO region
Fig.5  10°~80° (a) and 72°~76° (b) XRD pattens in as-sprayed and thermally cycling of ceramic layer
Fig.6  Microstructure of TBCs after 5000 times (a, c, e) and 10000 times (b, d, f) of thermal shock
Fig.7  10°~80° (a) and 72°~76° (b) XRD pattens in as-sprayed and after 10000 times thermal shock ceramic layer
1 Perepezko J H. The hotter the engine, the better [J]. Science, 2009, 326(5956): 1068
doi: 10.1126/science.1179327 pmid: 19965415
2 Zhao Y, Liu Y B, Zhao W W, et al. Thermal cycling failure mechanism of TBCs sprayed by high energy plasma spraying [J]. Therm. Spray Technol., 2014, 6(4): 33
赵 云, 柳彦博, 赵伟伟 等. 高能等离子喷涂TBCs热循环失效机理研究 [J]. 热喷涂技术, 2014, 6(4): 33
3 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296(5566): 280
pmid: 11951028
4 Chen H F, Zhang C, Xuan J H, et al. Effect of TGO evolution and element diffusion on the life span of YSZ/Pt-Al and YSZ/NiCrAlY coatings at high temperature [J]. Ceram. Int., 2020, 46(1): 813
5 Wu J, Zhu W, Mao Z L. Study on the growth of TGO in thermal barrier coatings under thermal cycling [J]. China Ceram., 2021, 57(11): 32
伍 杰, 朱 旺, 毛祖莉. 热循环下热障涂层热生长氧化层生长规律研究 [J]. 中国陶瓷, 2021, 57(11): 32
6 Chen Q F, Fan S K, Gong J B, et al. High temperature cyclic oxidation behaviour of ceramic thermal barrier coating [J]. Mater. Sci. Prog., 1992, 6(5): 414
陈全芳, 范世凯, 宫俊波 等. 陶瓷热障涂层的高温循环氧化行为 [J]. 材料科学进展, 1992, 6(5): 414
7 Huang F, Nie M, Lin J D, et al. The thermal gradient mechanical fatigue behavior of nickel-based superalloy with thermal barrier coatings [J]. Chin. J. Mater. Res., 2017, 31(1): 9
doi: 10.11901/1005.3093.2016.147
黄 丰, 聂 铭, 林介东 等. 涂覆热障涂层构件的热梯度机械疲劳行为研究 [J]. 材料研究学报, 2017, 31(1): 9
8 Xiao B J, Huang X, Robertson T, et al. Sintering resistance of suspension plasma sprayed 7YSZ TBC under isothermal and cyclic oxidation [J]. J. Eur. Ceram. Soc., 2020, 40(5): 2030
9 Kisi E H, Howard C J. Crystal structures of zirconia phases and their inter-relation [J]. Key Eng. Mater., 1998, 153-154: 1
10 Zhang X F, Zhou K S, Zhang J F, et al. Structure evolution of 7YSZ thermal barrier coating during thermal shock testing [J]. J. Inorg. Mater., 2015, 30(12): 1261
张小锋, 周克崧, 张吉阜 等. 热震中7YSZ热障涂层结构演变 [J]. 无机材料学报, 2015, 30(12): 1261
doi: 10.15541/jim20150199
11 Jiang K, Liu S B, Wang X. Phase stability and thermal conductivity of nanostructured tetragonal yttria-stabilized zirconia thermal barrier coatings deposited by air-plasma spraying [J]. Ceram. Int., 2017, 43(15): 12633
12 Jiang K, Liu S B, Li Y, et al. Effects of RE3+ ionic radius on monoclinic phase content of 8 mol% REO1.5 partially stabilized ZrO2 (RE = Yb, Y, Gd, and Nd) powder compacts after annealing at high temperature [J]. J. Am. Ceram. Soc., 2014, 97(3): 990
13 Mauer G, Guignard A, Vaßen R, et al. Process diagnostics in suspension plasma spraying [J]. Surf. Coat. Technol., 2010, 205(4): 961
14 Yuan T, Wang S X, He Q, et al. Development of suspension plasma spray thermal barrier coatings [J]. Surf. Technol., 2019, 48(4): 18
袁 涛, 王世兴, 何 箐 等. 悬浮液等离子喷涂热障涂层研究进展 [J]. 表面技术, 2019, 48(4): 18
15 Ganvir A, Curry N, Björklund S, et al. Characterization of microstructure and thermal properties of YSZ coatings obtained by axial suspension plasma spraying (ASPS) [J]. J. Therm. Spray Technol., 2015, 24(7): 1195
16 Ganvir A, Markocsan N, Joshi S. Influence of isothermal heat treatment on porosity and crystallite size in axial suspension plasma sprayed thermal barrier coatings for gas turbine applications [J]. Coatings, 2017, 7(1): 4
17 Liu Y, Cai H N, Wei Z Y, et al. Influence of the porosity on the thermal insulation performance of plasma sprayed thermal barrier coating [J]. Mater. Prot., 2021, 54(11): 1
刘 阳, 蔡洪能, 魏志远 等. 等离子喷涂热障涂层内孔隙对其隔热性能的影响 [J]. 材料保护, 2021, 54(11): 1
18 Ganvir A, Joshi S, Markocsan N, et al. Tailoring columnar microstructure of axial suspension plasma sprayed TBCs for superior thermal shock performance [J]. Mater. Des., 2018, 144: 192
19 Curry N, VanEvery K, Snyder T, et al. Thermal conductivity analysis and lifetime testing of suspension plasma-sprayed thermal barrier coatings [J]. Coatings, 2014, 4(3): 630
20 Gupta M, Markocsan N, Li X H, et al. Development of bondcoats for high lifetime suspension plasma sprayed thermal barrier coatings [J]. Surf. Coat. Technol., 2019, 371: 366
21 Li S, Xu M M, Zhang C Y, et al. Effect of pre-oxidation on the failure mechanisms of EB-PVD thermal barrier coatings with (Ni, Pt)Al bond coats [J]. Corros. Sci., 2021, 193: 109873
22 VanEvery K, Krane M J M, Trice R W, et al. Column formation in suspension plasma-sprayed coatings and resultant thermal properties [J]. J. Therm. Spray Technol., 2011, 20: 817
23 Ganvir A, Gupta M, Kumar N, et al. Effect of suspension characteristics on the performance of thermal barrier coatings deposited by suspension plasma spray [J]. Ceram. Int., 2021, 47(1): 272
24 Ling X X, Wang Y Z, Wang X, et al. Numerical study of effect of pore microstructure of layered thermal barrier coatings on thermal insulation performance [J]. Chin. J. Nonferrous Met., 2015, 25(2): 408
凌锡祥, 王玉璋, 王 星 等. 层状热障涂层孔隙微结构对其隔热性能影响的数值研究 [J]. 中国有色金属学报, 2015, 25(2): 408
25 Ganvir A, Vaidhyanathan V, Markocsan N, et al. Failure analysis of thermally cycled columnar thermal barrier coatings produced by high-velocity-air fuel and axial-suspension-plasma spraying: A design perspective [J]. Ceram. Int., 2018, 44(3): 3161
26 Dong H, Yang G J, Li C X, et al. Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma-sprayed TBCs [J]. J. Am. Ceram. Soc., 2014, 97(4): 1226
27 Poza P, Gómez-García J, Múnez C J. TEM analysis of the microstructure of thermal barrier coatings after isothermal oxidation [J]. Acta Mater., 2012, 60(20): 7197
28 Yu C T, Xie H Q, Li S, et al. Thermal cycling and interface bonding performance of single phase (Ni, Pt) Al coating with and without pure metastable tetragonal phase 4YSZ [J]. Appl. Surf. Sci., 2023, 615: 156326
29 Zhou D P, Mack D E, Gerald P, et al. Architecture designs for extending thermal cycling lifetime of suspension plasma sprayed thermal barrier coatings [J]. Ceram. Int., 2019, 45(15): 18471
30 Ibégazène H, Alpérine S, Diot C. Yttria-stabilized hafnia-zirconia thermal barrier coatings: The influence of hafnia addition on TBC structure and high-temperature behaviour [J]. J. Mater. Sci., 1995, 30(4): 938
31 Zhou D P, Malzbender J, Sohn Y J, et al. Sintering behavior of columnar thermal barrier coatings deposited by axial suspension plasma spraying (SPS) [J]. J. Eur. Ceram. Soc., 2019, 39(2): 482
32 Wang Q W, Mao W G, Yu M. Analysis of heat-insulating performance of air plasma sprayed thermal barrier coating systems [J]. Mater. Rep., 2011, 25(18): 125
王千文, 毛卫国, 喻 明. 等离子喷涂热障涂层隔热性能分析方法 [J]. 材料导报, 2011, 25(18): 125
33 Zhao Y X, Li D C, Zhong X H, et al. Thermal shock behaviors of YSZ thick thermal barrier coatings fabricated by suspension and atmospheric plasma spraying [J]. Surf. Coat. Technol., 2014, 249: 48
34 Bacciochini A, Ilavsky J, Montavon G, et al. Quantification of void network architectures of suspension plasma-sprayed (SPS) yttria-stabilized zirconia (YSZ) coatings using Ultra-small-angle X-ray scattering (USAXS) [J]. Mater. Sci. Eng., 2010, 528A(1) : 91
35 Ganvir A, Curry N, Markocsan N, et al. Comparative study of suspension plasma sprayed and suspension high velocity oxy-fuel sprayed YSZ thermal barrier coatings [J]. Surf. Coat. Technol., 2015, 268: 70
36 Shi J D, He Q. Service environment simulation test method of thermal barrier coatings [J]. J. Aeronaut. Mater., 2018, 38(2): 32
师俊东, 何 箐. 热障涂层服役环境模拟实验方法 [J]. 航空材料学报, 2018, 38(2): 32
doi: 10.11868/j.issn.1005-5053.2018.001003
[1] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
[2] LI Yuanyuan, LIANG Jian, XIONG Ziliu, MIAO Bin, TIAN Xiugang, QI Jianjun, ZHENG Shijian. Influence of Alloying Elements on Interfacial Layer- and Galvanized Layer-Structure of New Hot-dip Galvanized Dual-phase Steel[J]. 材料研究学报, 2024, 38(6): 446-452.
[3] ZHANG Jia, GAO Minghao, LUAN Shengjia, XU Na, CHANG Hui, DENG Yuting, HOU Wanliang, CHANG Xinchun. Effect of Feedstock Powders on Microstructure and Properties of CoNiCrAlY Coatings[J]. 材料研究学报, 2024, 38(5): 347-355.
[4] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[5] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[6] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] DENG Hailong, LIU Bing, GUO Yang, KANG Heming, LI Mingkai, LI Yongping. Prediction and Evaluation of Very-high Cycle Fatigue Strength of Carburized Cr-Ni Gear Steel Based on Interior Failure Mechanism[J]. 材料研究学报, 2023, 37(1): 55-64.
[8] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[9] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[10] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[11] FENG Min, LIAO Yimin, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Crystallization and Thermal Shock Behaviors of SiO2-Al2O3-ZnO-CaO-based Glass with Added Different Contents of CeO2 at 900[J]. 材料研究学报, 2022, 36(2): 90-98.
[12] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[13] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[14] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[15] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
No Suggested Reading articles found!