Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (11): 811-820    DOI: 10.11901/1005.3093.2023.302
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Electrochemical Properties of Discarded Polylactic Acid Hard Carbon
AO Shuangshuang, XU Jiachen, WANG Yuzuo, RUAN Dianbo(), QIAO Zhijun()
Institute of Advanced Energy Storage Technology and Equipment, NingBo University, NingBo 315211, China
Cite this article: 

AO Shuangshuang, XU Jiachen, WANG Yuzuo, RUAN Dianbo, QIAO Zhijun. Preparation and Electrochemical Properties of Discarded Polylactic Acid Hard Carbon. Chinese Journal of Materials Research, 2024, 38(11): 811-820.

Download:  HTML  PDF(18247KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Polylactic acid (PLA) is a widely used biomass-derived polymer material. A significant amount of discarded polylactic acid is generated every year in the disposable product sector. Herein, a discarded PLA-based hard carbon was synthesized with discarded PLA as precursor, through cross-linking reaction with phosphoric acid and then followed by high-temperature carbonization. The results indicate that excessively lower carbonization temperature will result in unstable pore structure with lower stability. Higher carbonization temperature leads to loss innon-carbon elements and decrease in reversible specific capacity. The introduction of phosphorus (P) increases the spacing between the hard carbon lamellae to 0.37 nm. At carbonization temperature of 700oC, the prepared discarded PLA-based hard carbon presents a honeycomb-like spherical framework with smaller specific surface area, and richer in high content of heteroatoms P and O, therefore exhibits the best electrochemical performance. By testing the assembled lithium-ion battery with electrode made of the acquired hard carbon, results show that by a current density of 100 mA/g, the specific capacity can reach 552 mAh/g; while for an initial Coulomb efficiency of 58.7% (324 mAh/g), the cycle stability is still excellent after 100 cycles. Besides, after multiple cycles at varying current densities, a reversible discharge capacity of 408 mAh/g is still maintained.

Key words:  organic polymer materials      polylactic acid      hard carbon      lithium-ion battery     
Received:  20 June 2023     
ZTFLH:  TM911  
Fund: Zhejiang Science and Technology Program Project(2022C01072);Ningbo Science and Technology Program Project(2022Z026)
Corresponding Authors:  RUAN Dianbo, Tel: (0574)87609953, E-mail: ruandianbo@nbu.edu.cn;
QIAO Zhijun, Tel: (0574)87600302, E-mail: qiaozhijun@nbu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.302     OR     https://www.cjmr.org/EN/Y2024/V38/I11/811

Fig.1  Illustration of the preparation procedure for PLA-based Hard carbon material
Fig.2  SEM images of pre-oxidized PLA (a), PHC-600 (b), PHC-700 (c), PHC-800 (d) and EDS energy spectroscopy of PHC-600 (e), PHC-700 (f), PHC-800 (g)
Fig.3  HRTEM images of pre-oxidized PLA (a), PHC-600 (b), PHC-700 (c) and PHC-800 (d)
Fig.4  Nitrogen adsorption isotherm (a) and pore size distribution curve (b) of hard carbon PHC-X
Sample descriptionTotal specific surface area / m2·g-1Micropore specific surface area / m2·g-1

Total pore volume

/ cm3·g-1

Microporous pore volume

/ cm3·g-1

Preoxidized PLA6.25000.010
PHC-60043.931.420.0010.088
PHC-70034.1811.620.0060.072
PHC-80039.9013.060.0070.072
Table 1  Pore structure parameters of hard carbon PHC-X
Fig.5  XRD spectrum (a) and Raman spectroscopy (b) of hard carbon PHC-X
Fig.6  XPS analysis (a) full photoelectron spectroscopy of PHC-X, (b) P2p of PHC-600, (c) P2p of PHC-700 and (d) P2p of PHC-800

Sample

Element

C / %O / %P / %
Preoxidized PLA85.3012.522.18
PHC-60086.7811.881.34
PHC-70088.4610.600.94
PHC-80090.029.600.38
Table 2  Elemental composition of hard carbon PHC-X
Fig.7  CV curves at 0.1 mV/s of PHC-600 (a), PHC-700 (b), PHC-800 (c) and PHC-X under the second circle (d)
Fig.8  Electrochemical performance of hard carbon PHC-X (a) GCD curves at 100 mA/g of PHC-600; (b) GCD curves at 100 mA/g of PHC-700;(c) GCD curves at 100 mA/g of PHC-800; (d) GCD curves at different current densities of PHC-800; (e) Rate capability of PHC-X and (f) Cycling performance of PHC-X
Fig.9  Analysis of electrochemical impedance spectras (a) Nyquist curves before the cycle and (b) Nyquist curves after the cycle
1 Wang H F. Preparation of petroleum coke based activated carbon and its application in supercapacitors [D]. Changsha: Hunan University, 2015
王华飞. 石油焦基活性炭的制备及其在超级电容器方面的应用 [D]. 长沙: 湖南大学, 2015
2 Le V Q, Do T H, Retamal J R D, et al. Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor [J]. Nano Energy, 2019, 56: 9
3 Chen Y, Cai K, Liu C, et al. High-performance and breathable polypyrrole coated air-laid paper for flexible all-solid-state supercapacitors [J]. Adv. Energy Mater., 2017, 7(21): 1701247
4 Mukherjee R, Krishnan R, Lu T M, et al. Nanostructured electrodes for high-power lithium ion batteries [J]. Nano Energy, 2012, 1(4): 33
5 Li J, Du Z, Ruther R E, et al. Toward low-cost, high-energy density, and high-power density lithium-ion batteries [J]. JOM, 2017, 69(9): 96
6 Chen X, Sun W, Wang Y. Covalent organic frameworks for next‐generation batteries [J]. Chem. Electro. Chem., 2020, 7(19): 26
7 Zhou D, Cui Y, Han B. Graphene-based hybrid materials and their applications in energy storage and conversion [J]. Chin. Sci. Bulletin, 2012, 57(23): 94
8 Moradi B, Botte G G. Recycling of graphite anodes for the next generation of lithium ion batteries [J]. J. Appl. Electrochem., 2015, 46(2): 48
9 Asenbauer J, Eisenmann T, Kuenzel M, et al. The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites [J]. Sustain. Energy Fuels, 2020, 4(11): 416
10 Wu P, Shao G, Guo C, et al. Long cycle life, low self-discharge carbon anode for Li-ion batteries with pores and dual-doping [J]. J. Alloys Compd., 2019, 802: 7
11 Song D, Wang S, Liu R, et al. Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material [J]. Appl. Surf. Sci., 2019, 478: 8
12 Bhattacharya P, Lee J H, Kar K K, et al. Carambola-shaped SnO2 wrapped in carbon nanotube network for high volumetric capacity and improved rate and cycle stability of lithium ion battery [J]. Chem. Eng. J., 2019, 369: 31
13 Ali G, Patil S A, Mehboob S, et al. Determination of lithium diffusion coefficient and reaction mechanism into ultra-small nanocrystalline SnO2 particles [J]. J. Power Sources, 2019, 419: 36
14 Bai J, Wu H, Wang S, et al. Synthesis of CoSe2-SnSe2 nanocube-coated nitrogen-doped carbon (NC) as anode for lithium and sodium ion batteries [J]. Appl. Surf. Sci., 2019, 488: 21
15 Hong Y, Mao W, Hu Q, et al. Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes [J]. J. Power Sources, 2019, 428: 52
16 Tian Q, Zhang F, Yang L. Fabricating thin two-dimensional hollow tin dioxide/carbon nanocomposite for high-performance lithium-ion battery anode [J]. Appl. Surf. Sci., 2019, 481: 84
17 Zhao Q, Meng Y, Li J, et al. Sulfur and nitrogen dual-doped porous carbon nanosheet anode for sodium ion storage with a self-template and self-porogen method [J]. Appl. Surf. Sci., 2019, 481: 83
18 Zhang W, An X Y, Liu L Q, et al. Preparation and electrochemical properties of lignin nanoparticles/natural fiber activated carbon fiber materials [J]. Chem. Indust. Eng. Prog., 2022, 41(7): 83
张 伟, 安兴业, 刘利琴 等. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能 [J]. 化工进展, 2022, 41(7): 83
19 Zhang W, Zhang B, Jin H, et al. Waste eggshell as bio-template to synthesize high capacity δ-MnO2 nanoplatelets anode for lithium ion battery [J]. Ceram. Int., 2018, 44(16): 8
20 Cheng Y, Huang J, Li J, et al. Turning waste makeup cotton to a hollow structured carbon as anode for high-performance lithium ions batteries [J]. Micro. Nano Lett., 2020, 15(15): 8
21 Wang Y, Li Y, Mao S S, et al. N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries [J]. Sustain. Energy Fuels, 2019, 3(3): 22
22 Rezvani G E, Khosravi F, Saedi A A, et al. The life cycle assessment for polylactic acid (PLA) to make it a low-carbon mater-ial [J]. Polymers, 2021, 13(11): 1854
23 Ilyas R A, Zuhri M Y M, Aisyah H A, et al. Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications [J]. Polymers, 2022, 14(1): 202
24 Ali W, Ali H, Gillani S, et al. Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review [J]. Environ. Chem. Lett., 2023, 21: 1761
25 Yu J L, Rafique J, Yu J. Study on carbonization process of electrospinning PAN Nanofibers [J]. Guangzhou Chem., 2007, (3): 8
于记良, Rafique J, 于 杰. 电纺PAN纳米纤维的碳化工艺研究 [J]. 广州化工, 2007, (3): 8
26 Wu Y P, Wan C R, Jiang C Y, et al. Mechanism of lithium storage in low temperature carbon [J]. Carbon, 1999, 37(12): 8
27 Kim C, Yang K S, Kojima M, et al. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries [J]. Adv. Funct., 2006, 16(18): 7
28 Li Y, Yuan Y, Bai Y, et al. Insights into the Na+ storage mechanism of phosphorus‐functionalized hard carbon as ultrahigh capacity anodes [J]. Adv. Funct., 2018, 8(18): 1
29 Shi L, Chen Y, Song H, et al. Preparation and lithium-storage performance of a novel hierarchical porous carbon from sucrose using Mg-Al layered double hydroxides as template [J]. Electrochim. Acta, 2017, 231: 61
30 Ai W, Wang X, Zou C, et al. Molecular-level design of hierarchically porous carbons codoped with nitrogen and phosphorus capable of in situ self-activation for sustainable energy systems [J]. Small, 2017, 13(8): 1602010
31 Shi S, Sun C, Yin X, et al. FeP quantum dots confined in carbon-nanotube-grafted p-doped carbon octahedra for high-rate sodium storage and full-cell applications [J]. Adv. Funct., 2020, 30(10): 1909283
32 Alvin S, Cahyadi H S, Hwang J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon [J]. Adv. Energy Mater., 2020, 10(20): 2000283
33 Piedboeuf M L C, Léonard A F, Reichenauer G, et al. How do the micropores of carbon xerogels influence their electrochemical behavior as anodes for lithium-ion batteries? [J]. Micropor. Mesopor. Mat., 2019, 275: 87
34 Hu L, Lu Y, Li X, et al. Optimization of microporous carbon structures for lithium-sulfur battery applications in carbonate-based electrolyte [J]. Small, 2017, 13(11): 1063533
35 Ou J, Yang L, Zhang Y, et al. Fabrication of porous nitrogen-doped carbon materials as anodes for high-performance lithium ion batteries [J]. Chin. J. Chem., 2015, 33(11): 302
36 Li D, Liu X, Zhou H. The size-dependent phase transition of LiFePO4 particles during charging and discharging in lithium-ion batteries [J]. Energy Technol., 2014, 2(6): 7
[1] SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide[J]. 材料研究学报, 2024, 38(9): 680-690.
[2] ZHOU Jian, XIA Mengyue, ZHANG Hangfei, LIU Qiaojun. Preparation of Dopamine and Polyethyleneimine Co-deposition Modified Cation Exchange Membrane[J]. 材料研究学报, 2024, 38(8): 585-592.
[3] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[4] WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. 材料研究学报, 2024, 38(2): 92-104.
[5] LI Yuxuan, DU Yonggang, SU Junming, WANG Zhi, ZHU Yongfei. Superhydrophobic Sponge Coated with Polybenzoxazine and ZnO for Oil-Water Separation[J]. 材料研究学报, 2024, 38(1): 71-80.
[6] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[7] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[8] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[9] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[10] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[11] XIAO Lan, YU Wenhua, HUANG Hao, WU Aimin, JIN Xiaozhe. Preparation and Performance of TiS3 Nanoflakes as Anode Material for Lithium-ion Batteries[J]. 材料研究学报, 2022, 36(11): 821-828.
[12] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[13] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[14] LINGHU Changkai, LI Xiaolong, LUO Zhu, YANG Le, XIA Xiaosong. Triphenyl Phosphite Regulates Degradation Behavior and Properties of Polylactic Acid/Ferric Chloride Blend[J]. 材料研究学报, 2021, 35(8): 632-640.
[15] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
No Suggested Reading articles found!