Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (5): 347-355    DOI: 10.11901/1005.3093.2023.340
ARTICLES Current Issue | Archive | Adv Search |
Effect of Feedstock Powders on Microstructure and Properties of CoNiCrAlY Coatings
ZHANG Jia, GAO Minghao, LUAN Shengjia, XU Na, CHANG Hui, DENG Yuting, HOU Wanliang, CHANG Xinchun()
Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Jia, GAO Minghao, LUAN Shengjia, XU Na, CHANG Hui, DENG Yuting, HOU Wanliang, CHANG Xinchun. Effect of Feedstock Powders on Microstructure and Properties of CoNiCrAlY Coatings. Chinese Journal of Materials Research, 2024, 38(5): 347-355.

Download:  HTML  PDF(10436KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Two type powders of CoNiCrAlY alloy were prepared by gas atomization (GA) and water atomization (WA) respectively, then which were used as feedstock powders to further prepared the corresponding coatings on a directionally solidified high temperature alloy DZ411by using high velocity oxygen fuel (HVOF) technique and subsequently they were subjected to proper subsequent vacuum heat treatment. The flowability and apparent density of the prepared powders were measured according to GB/T 1484 and GB/T 1479. Meanwhile, the phase composition, microstructure, microhardness, and adhesive strength to the substrate of the prepared coatings were characterized via optical microscopy and scanning electron microscopy, automatic hardness tester, and universal testing machine. The high temperature oxidation performance of the coatings/ DZ411 was assessed in air at 1050oC for 200 h. The results show that compared with WA, the CoNiCrAlY powder prepared by GA is spherical or nearly spherical, with good flowability and high apparent density. The prepared GA coating has a dense and uniform structure with high β phase content, low porosity, high adhesive strength and high microhardness. After vacuum heat treatment, mutual fusion of particles was clearly observed within the two coatings, while the amount of β phase increases and its distribution becomes much more uniform, correspondingly, their porosity and microhardness decrease. The adhesive strength of WA coating after vacuum heat treatment has been improved, but there are still larger pores within the coating. The vacuum heat treated GA coating presents much better oxidation resistance.

Key words:  surface and interface in the materials      gas atomization      water atomization      CoNiCrAlY powder      HVOF coating      vacuum heat treatment      microstructure      properties     
Received:  11 July 2023     
ZTFLH:  TG178  
Fund: Municipal Science and Technology Project of Yunnan Province(202302AB080020)
Corresponding Authors:  CHANG Xinchun, Tel: (024)23971865, E-mail:xcchang@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.340     OR     https://www.cjmr.org/EN/Y2024/V38/I5/347

ParametersValue
Barrel / mm152.4
Kerosene flow / GPH6
Oxygen flow / SCFH1950
Powder feeding rate / g·min-142
Spraying distance / mm380
Spraying angle / (°)90
Table 1  Spraying parameters by HVOF
Fig.1  XRD patterns of CoNiCrAlY powders prepared by GA and WA
Fig.2  SEM Photos of CoNiCrAlY powders prepared by GA and WA
Fig.3  XRD patterns of CoNiCrAlY coatings prepared by GA and WA
Fig.4  Cross section microstructure photo of CoNiCrAlY coatings prepared by GA (a) and by WA (b)
Fig.5  XRD patterns of vacuum heat treated CoNiCrAlY coatings prepared by GA and by WA GA and WA
Fig.6  Cross section microstructure photo of vacuum heat treated CoNiCrAlY coatings prepared by GA (a, b) and WA (c, d)
Fig.7  Adhesive strength measured by tensile method of CoNiCrAlY coatings prepared by GA and WA
Fig.8  Tensile fracture morphology of CoNiCrAlY coatings (a) as-spray and (b) vacuum heat treatment prepared by GA; and (c) as-spray and (d) vacuum heat treatment prepared by WA
Fig.9  Microhardness of CoNiCrAlY coatings
Fig.10  XRD patterns of as-sprayed CoNiCrAlY coating prepared by GA and WA after oxidation at 1050oC for 200 h
Fig.11  XRD patterns of vacuum heat treated CoNiCrAlY coating prepared by GA and WA after oxidation at 1050oC for 200 h
Fig.12  Cross section morphology of as-sprayed CoNiCrAlY coating prepared by GA (a) and by WA(b) after oxidation for 200 h
OAlCrCoNi
A55.0544.95---
B43.8713.0812.3513.1317.58
Table 2  Energy spectrum analysis of TGO (atomic fraction, %)
Fig.13  Cross section morphology of as-sprayed CoNiCrAlY coating after oxidation prepared by GA (a) and by WA (b) after oxidation for 200 h
1 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296: 280
pmid: 11951028
2 Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Prog. Mater. Sci., 2001, 46: 505
3 Guo H B, Gong S K, Xu H B. Progress in thermal barrier coatings for advanced aeroengines[J]. Mater. China, 2009, 28(S2): 18
郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(S2): 18
4 Wang B, Liu Y, Luan S J, et al. Microstructure design of CoNiCrAlY bonding coating and its influence on the bonding strength and thermal Sshock resistance of thermal barrier coatings[J]. Surf. Technol., 2023, 52(2): 263
王 博, 刘 洋, 栾胜家 等. CoNiCrAlY黏结层结构设计及其对热障涂层结合强度和抗热震性能的影响[J]. 表面技术, 2023, 52(2): 263
5 Vishnu S, Ramkumar P B, Deepak S, et al. Optimized thermal barrier coating for gas turbine blades[J]. Mater. Today: Proceedings 2019, 11: 912
6 Gurrappa I, Rao A S. Thermal barrier coatings for enhanced efficiency of gas turbine engines[J]. Surf. & Coat. Technol., 2006, 201: 3016
7 Peng X, Li W, Fu L B, et al. Role of Re in NiAl bond coating on isothermal oxidation behavior of a thermal barrier coating system at 1100oC[J]. Corros. Sci., 2023, 218: 111151
8 Oskay C, Galetz M C, Murakami H. Oxide scale formation and microstructural degradation of conventional, Pt- and Pt/Ir-modified NiAl diffusion coatings during thermocyclic exposure at 1100oC[J]. Corros. Sci., 2018, 144: 313
9 Shen M L, Zhu S L. Advancement of technologies for preparing high-performance aluminide coatings[J]. Aeronaut. Manufact. Tec-hnol., 2016, 21: 105
沈明礼, 朱胜龙. 先进铝化物涂层制备技术进展[J]. 航空制造技术. 2016, 21: 105
10 Chen W J, Song P, Gao D, et al. Review and outlook of metallic bond coats for thermal barrier coatings in aeroengine and industrial gas turbine applications[J]. J. Aeronaut. Mater., 2022, 42(01):15
陈卫杰, 宋 鹏, 高 栋 等. 航空发动机和工业燃气轮机热喷涂热障涂层用金属黏结层: 回顾与展望[J]. 航空材料学报, 2022, 42(01): 15
11 Galiullin T, Chyrkin A, Pillai R, et al. Effect of alloying elements in Ni-base substrate material on interdiffusion processes in MCrAlY-coated systems[J]. Surf. & Coat. Technol., 2018, 350: 359
12 Yuan K, Eriksson R, Peng R L, et al. Modeling of microstructural evolution and lifetime prediction of MCrAlY coatings on nickel based superalloys during high temperature oxidation[J]. Surf. & Coat. Technol., 2013, 232: 204
13 Yun G T, Li Q L, Cheng X D. The application of MCrAlY coatings on aeroengine hot-section components[J]. Therm. Spray Technol., 2015, 7(2): 6
运广涛, 李其连, 程旭东. MCrAlY涂层在航空发动机热端部件上的应用[J]. 热喷涂技术, 2015, 7(2): 6
14 Tang F, Ajdelsztajn L, Schoenung J M. Characterization of oxide scales formed on HVOF NiCrAlY coatings with various oxygen contents introduced during thermal spraying[J]. Scr. Mater., 2004, 51(1): 25
15 Khoddami A, Sabour A, Hadavi S M M. M.Microstructure formation in thermally-sprayed duplex and functionally graded NiCrAlY/Yttria-Stabilized Zirconia coatings[J]. Surf. & Coat. Technol., 2006, 201: 6019
16 Hu Y, Cai C Y, Wang Y G, et al. YSZ/NiCrAlY interface oxidation of APS thermal barrier coatings[J]. Corros. Sci., 2018, 142: 22
17 Li W S, Wang Y X. Influence of NiCoCrAlY spraying process on oxidation resistance of 8YSZ thermal barrier coatings[J]. Surf. Technol., 2019, 48(8): 263
李文生, 王裕熙. NiCoCrAlY黏结层喷涂工艺对8YSZ热障涂层抗氧化性能的影响[J]. 表面技术, 2019, 48(8): 263
18 Dong Y, Ren Z M, Lin X P, et al. Effect of HVOF-sprayed bond coat on the oxidation resistance of thermal barrier coating[J]. J. Mechan. Eng., 2010, 46(20): 46
董 允, 任志敏, 林晓娉 等. 超音速喷涂粘结层对热障涂层抗氧化性能的影响[J]. 机械工程学报, 2010, 46(20): 46
19 Wu C J, Yang J, Wang Q S. Effect of powder characteristics on the performance of HVOF sprayed carbide coatings[J]. J. Aerospace Manufact. Technol., 2002, 6: 9
吴朝军, 杨 杰, 王全胜. 粉末特性对HVOF喷涂碳化物涂层性能的影响[J]. 航天制造技术, 2002, 6: 9
20 Gao M H, Luan S J, Xu N, et al. Oxidation resistance of thermal barrier coating with vacuum heat treated double-layer bond coating[J]. Rare Metal Mater. & Eng., 2022, 51(2): 719
高明浩, 栾胜家, 徐 娜 等. 真空热处理双粘结层热障涂层抗氧化性能[J]. 稀有金属材料与工程, 2022, 51(2): 719
21 Chen X, Wu S, Liu Y, et al. High temperature oxidation behavior of CoNiCrAlY coating prepared by vacuum plasma spraying and vacuum heat treatment[J]. Appl. Surf. Sci., 2018, 427: 1040
22 Li S, Di Y L, Wang H D, et al. Progress on stress distribution and crack propagation behavior at the TGO interfaces of thermal barrier coatings[J]. Surf. Technol., 2021, 50(6): 138
李 帅, 底月兰, 王海斗 等. 热障涂层TGO界面应力分布及裂纹扩展行为的研究进展[J], 表面技术, 2021, 50(6): 138
23 Li T J, Li Y, Li J T, et al. Oxidation behavior of high-velocity oxygen fuel sprayed MCrAlY coatings[J]. Chin.Soc.for Elec.Eng., 2014, 34: 176
李太江, 李 勇, 李聚涛 等. 超音速火焰喷涂MCrAlY涂层氧化性能研究[J]. 中国电机工程学报, 2014, 34: 176
24 Zhang L W, Yu J M, Ning X J, et al. Effect of pre-oxidation vacuum degree on the high temperature oxidation behavior of cold sprayed CoNiCrAlY coatings[J]. Mater. Reports, 2022, 36(17): 21030092
张林伟, 余玖明, 宁先进 等. 预氧化真空度对冷喷涂CoNiCrAlY涂层高温氧化行为的影响[J]. 材料导报, 2022, 36(17): 21030092
[1] WU Yingming, JIANG Keda, LIU Shengdan, FAN Shitong, QIN Qiuhui, LI Jun. Hot Compression Deformation Behavior of 6013 Aluminum Alloy by Low lnZ[J]. 材料研究学报, 2024, 38(5): 337-346.
[2] WANG Zhongnan, GUO Hui, MU Yueshan. Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification[J]. 材料研究学报, 2024, 38(4): 269-278.
[3] WANG Yuzhao, JIANG Zhonghua, JIA Chunni, ZHANG Yutuo, WANG Pei. Microstructure and Mechanical Properties of an Austempered Nanostructured Bainitic Steel[J]. 材料研究学报, 2024, 38(4): 279-287.
[4] MA Fei, WANG Chuang, GUO Wuming, SHI Xiangdong, SUN Jianying, PANG Gang. Effect of Carbon Content on Tribological Properties of CrN:a-C Multiphase Composite Coatings[J]. 材料研究学报, 2024, 38(4): 297-307.
[5] LI Yunfei, WANG Jinhe, ZHANG Long, LI Zhengkun, FU Huameng, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng. Effect of Annealing Temperature on Microstructure and Properties of a High-entropy Alloy Fe35Ni30Cr20Al10Nb5[J]. 材料研究学报, 2024, 38(4): 241-247.
[6] TIAN Songwen, LIU Lirong, TIAN Sugui. Creep Behavior and Mechanism of a Re/Ru-containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2024, 38(4): 248-256.
[7] QI Kaili, HU Dejiang, GAO Chong, LIU Feng, PANG Jianchao, SHAO Chenwei, YANG Mengqi, LI Shouxin, ZHANG Zhefeng. Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures[J]. 材料研究学报, 2024, 38(3): 197-207.
[8] YAN Junzhu, GAO Ming, YU Xiaoming, TAN Lili. Effect of Ca and Ag Content on Microstructure and Properties of Biodegradable Alloy Zn-Li-Ca-Ag[J]. 材料研究学报, 2024, 38(3): 177-186.
[9] LIU Chenye, LUO Tianjiao, LI Yingju, FENG Xiaohui, HUANG Qiuyan, ZHENG Ce, ZHU Cheng, YANG Yuansheng. Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus[J]. 材料研究学报, 2024, 38(3): 187-196.
[10] ZENG Daoping, AN Tongbang, ZHENG Shaoxian, DAI Haiyang, CAO Zhilong, MA Chengyong. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel[J]. 材料研究学报, 2024, 38(2): 151-160.
[11] LV Tao, LIU Fang, LIU Chang, DONG Dexiu, ZHANG Weihong, CAI Guixi. Influence of Microstructure on Ultrasonic Attenuation of Forged GH907 Alloy Ring for Aero Engine Turbine Casing[J]. 材料研究学报, 2024, 38(1): 14-22.
[12] QIN Yanli, ZHAO Guangpu, ZHANG Hao, NI Dingrui, XIAO Bolv, MA Zongyi. Microstructure and Properties of Al-30Si Alloy Produced by Selective Laser Melting[J]. 材料研究学报, 2024, 38(1): 43-50.
[13] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[14] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[15] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
No Suggested Reading articles found!