Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (10): 741-750    DOI: 10.11901/1005.3093.2023.562
ARTICLES Current Issue | Archive | Adv Search |
Wear and Corrosion Resistance of Laser Cladding CoCrFeNiSi x High Entropy Alloy Coating
ZHANG Zejiang, LI Xinmei()
School of Mechanical Engineering, Xinjiang University, Urumqi 830000, China
Cite this article: 

ZHANG Zejiang, LI Xinmei. Wear and Corrosion Resistance of Laser Cladding CoCrFeNiSi x High Entropy Alloy Coating. Chinese Journal of Materials Research, 2024, 38(10): 741-750.

Download:  HTML  PDF(18766KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A high entropy alloy CoCrFeNiSi x (x = 0.2, 0.6, 1) coating was deposited onto 40Cr steel surface by means of laser cladding technique. The phase composition, microstructure, hardness, friction and wear behavior, as well as electrochemical corrosion properties of the coating in 3.5%NaCl solution were systematically investigated with emphasis on the effect of Si element on the high entropy alloy coating. Results reveal that with the increasing in Si content, the high entropy alloy coatings experienced transformation of phase composition from single face-centered cubic structure to face-centered cubic structure with silicide σ phase and finally to face-centered cubic structure with body-centered cubic structure and σ phase. The microstructure of the coating evolves from equiaxial to columnar and dendritic morphology. The microhardness of the coating increases with the increasing Si content; when x = 1, it reaches the maximum value 498.92HV, which is about 2.52 times higher than that of the substrate, which may be due to solid solution strengthening caused by lattice distortion induced by Si addition and second-phase strengthening resulting from intermetallic compound σ phase formation within the coating matrix. Moreover, with the increasing Si content, the wear rate and average friction coefficient reduced gradually; when x = 1, the friction coefficient decreases significantly to around 0.309, indicating that the improved tribological performance mainly attributed to changes in wear mechanism from adhesive wear or delamination wear towards abrasive, so that the wear resistance is enhanced under dry sliding conditions. The corrosion resistance of alloy coatings in 3.5%NaCl solution is also improved gradually with the increasing Si content, reaching its optimum value by x = 1.

Key words:  metallic materials      high entropy alloy      laser cladding      microstructure      wear resistance      corrosion resistance     
Received:  24 November 2023     
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China(52161017);Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01C386)
Corresponding Authors:  LI Xinmei, Tel: 13699372889, E-mail: lxmxj@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.562     OR     https://www.cjmr.org/EN/Y2024/V38/I10/741

Fig.1  XRD patterns of CoCrFeNiSi x (x = 0.2, 0.6, 1) high-entropy alloy coatings
Fig.2  Microstructure morphology of CoCrFeNiSi x (x = 0.2, 0.6, 1) high-entropy alloy (a, b) Si0.2; (c, d) Si0.6; (e, f) Si1
AlloysPointElements / %, atom fraction
CoCrFeNiSi
Si0.2A17.6216.3948.0815.62.3
B16.0618.9542.9817.454.57
Si0.6C21.0718.3735.9118.156.5
D16.4421.7027.4718.4915.89
Si1E16.2716.7543.3012.6910.99
F16.4614.1032.6719.6817.09
Table 1  EDS analysis of test points of CoCrFeNiSi x (x = 0.2, 0.6, 1) coating
Fig.3  Mapping of CoCrFeNiSi x (x = 0.2, 0.6, 1) alloy coating (a) Si0.2; (b) Si0.6; (c) Si1
Fig.4  Microhardness of CoCrFeNiSi x (x = 0.2, 0.6, 1) alloy coating
Fig.5  Friction and wear curves of substrate and coating
Fig.6  Average friction coefficient (a) weight loss and (b) of substrate and coating
Fig.7  Wear profile curves and wear cross-section area of 40Cr matrix and CoCrFeNiSi x (x = 0.2, 0.6, 1) alloy coating (a, b)40Cr matrix; (c, d) Si0.2
Fig.8  Wear volume and wear rate of substrate and coating
Fig.9  Morphology of wear marks of the substrate and coating (a, b) 40Cr; (c, d) Si0.2; (e, f) Si0.6; (g, h) Si1
Fig.10  Polarization curves of substrate and coating in 3.5%NaCl solution
AlloyEcorr / VIcorr / A·cm-2
40Cr-1.08275.0528 × 10-4
Si0.2-0.98434.5095 × 10-4
Si0.6-0.96432.5326 × 10-4
Si1-0.93432.3539 × 10-4
Table 2  Electrochemical parameters of substrate and coatings with different Si content
Fig.11  Electrochemical impedance spectra of substrate and coatings with different Si content (a) Nyqu-ist plot; (b) Bode plot; (c) equivalent circuit
AlloyRs / Ω·cm2Rf / Ω·cm2Rct / Ω·cm2
40Cr6.097605.72250
Si0.27.318606.54373
Si0.67.773809.74790
Si16.651942.16263
Table 3  Electrochemical impedance fitting results of substrate and coating
Fig.12  Corrosion morphology of substrate and coating in 3.5%NaCl solution (a, b) 40Cr; (c, d) Si0.2; (e, f) Si0.6; (g, h) Si1
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6(5): 299
2 Zhu Q, Liu Y, Zhang C. Laser cladding of CoCrFeNi high-entropy alloy coatings: Compositional homogeneity towards improved corrosion resistance [J]. Mater. Lett., 2022, 318: 132133
3 Zhang W, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61(1): 2
4 Zhao Y J, Qiao J W, Ma S G, et al. A hexagonal close-packed high-entropy alloy: The effect of entropy [J]. Mater. Design, 2016, 96: 10
5 Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases [J]. Nature Com., 2015, 6(1): 6529
6 Cheng J, Sun B, Ge Y, et al. Effect of B/Si ratio on structure and properties of high-entropy glassy Fe25Co25Ni25(B x Si1- x ) 25 coating prepared by laser cladding [J]. Surface Coat. Technol., 2020, 402: 126320
7 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Progress in Mater. Sci., 2014, 61: 1
8 Wang Z, Huang Y, Yang Y, et al. Atomic-size effect and solid solubility of multicomponent alloys [J]. Scri. Mater., 2015, 94: 28
9 Kumar N, Fusco M, Komarasamy M, et al. Understanding effect of 3.5wt.%NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy [J]. J. Nuclear Mater., 2017, 495: 154
10 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153
doi: 10.1126/science.1254581 pmid: 25190791
11 Gan Y, Duan S, Mo Y, et al. Effects of Al addition on the microstructure and mechanical properties of AlxCoCrFeNi2.1 high-entropy alloys [J]. Intermet., 2024, 166: 108172
12 Lee C P, Chang C C, Chen Y Y, et al. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments [J]. Corr. Sci., 2008, 50(7): 2053
13 He S H, Cheng F, Xia S Q, et al. Preparation and properties of high-entropy alloys [J]. Thermal Working Technol., 2022, 51(18): 22
何胜豪, 程 芳, 夏松钦 等. 高熵合金的制备及性能 [J]. 热加工工艺, 2022, 51(18): 22
14 Shu F, Wang B, Zhao H, et al. Effects of line energy on microstructure and mechanical properties of CoCrFeNiBSi high-entropy alloy laser cladding coatings [J]. J. Therm. Spray Technol., 2020, 29: 789
15 Shu F Y, Wu L, Zhao H Y, et al. Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coating [J]. Mater. Lett., 2018, 211: 235
16 Zhang S, Wu C L, Zhang C H, et al. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance [J]. Optics Laser Technol., 2016, 84: 23
17 Pereira J C, Zambrano J C, Tobar M J, et al. High temperature oxidation behavior of laser cladding MCrAlY coatings on austenitic stainless steel [J]. Surf. Coat. Technol., 2015, 270: 243
18 Zhang S, Han B, Li M, et al. Microstructure and high temperature erosion behavior of laser cladded CoCrFeNiSi high entropy alloy coating [J]. Surf. Coat. Technol., 2021, 417: 127218
19 Li Z, Chai L, Tang Y, et al. 316L stainless steel repaired layers by weld surfacing and laser cladding on a 27SiMn steel: A comparative study of microstructures, corrosion, hardness and wear performances [J]. J. Mater. Res. Technol., 2023, 23: 2043
20 Liu X, Jiang F, Chen Z, et al. Microstructure and corrosion property of TC4 coating with Al0.5CoCrFeNi high-entropy alloy interlayer by laser cladding [J]. Surf. Coat. Technol., 2024, 476: 130190
21 Li Y, Li Y, Wang W, et al. Synthesis Fe-Ni protective coating on 45 steel by laser remelting nickel pre-coating dopped with Fe-based amorphous powders [J]. Mater. Character., 2021, 176: 111129
22 Ren L, Ding Y, Cheng Y, et al. The microstructure evolving and element transport of Ni-based laser-cladding layer in supercritical water [J]. Corr. Sci., 2022, 198: 110112
23 Liu Y, Yao Z, Zhang P, et al. Tailoring high-temperature oxidation resistance of FeCrMnVSi x high entropy alloy coatings via building Si-rich dendrite microstructure [J]. Appl. Surface Sci., 2022, 606: 154862
24 Liu H, Zhang T, Sun S, et al. Microstructure and dislocation density of AlCoCrFeNiSi x high entropy alloy coatings by laser cladding [J]. Mater. Lett., 2021, 283: 128746
25 Zhu Z X, Liu X B, Liu Y F, et al. Effects of Cu/Si on the microstructure and tribological properties of FeCoCrNi high entropy alloy coating by laser cladding [J]. Wear, 2023, 512: 204533
26 Chen Y, Gao X, Qin G, et al. Achieving excellent specific yield strength in non-equiatomic TiNbZrVMo high entropy alloy via metalloid Si doping [J]. Mater. Lett., 2023: 133832
27 Tsai M H, Yuan H, Cheng G, et al. Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy [J]. Intermetal., 2013, 33: 81
28 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46(12): 2817
29 Cheng P, Zhao Y, Xu X, et al. Microstructural evolution and mechanical properties of Al0.3CoCrFeNiSi x high-entropy alloys containing coherent nanometer-scaled precipitates [J]. Mater. Sci. Eng., 2020, 772: 138681
30 Huang L, Wang X, Jia F, et al. Effect of Si element on phase transformation and mechanical properties for FeCoCrNiSi x high entropy alloys [J]. Mater. Lett., 2021, 282: 128809
31 Hao W J, Sun R L, Niu W, et al. Microstructure and properties of high-entropy alloy coatings CoCrFeNiSi x laser cladding [J]. Surf. Technol., 2021, 50(5): 87
郝文俊, 孙荣禄, 牛 伟 等. 激光熔覆CoCrFeNiSi x 高熵合金涂层的组织及性能 [J]. 表面技术, 2021, 50(5): 87
32 Teskeredžić A, Demirdžić I, Muzaferija S. Numerical method for calculation of complete casting processes—Part I: Theory [J]. Numerical Heat Trans., B: Fundament., 2015, 68(4): 295
33 Korchef A, Champion Y, Njah N. X-ray diffraction analysis of aluminium containing Al8Fe2Si processed by equal channel angular pressing [J]. J. Alloys Compound., 2007, 427(1-2): 176
34 Ogura M, Fukushima T, Zeller R, et al. Structure of the high-entropy alloy AlxCrFeCoNi: fcc versus bcc [J]. J. Alloys Compound., 2017, 715: 454
35 Liu H, Sun S, Zhang T, et al. Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding [J]. Surf. Coat. Technol., 2021, 405: 126522
36 Kumar A, Swarnakar A K, Basu A, et al. Effects of processing route on phase evolution and mechanical properties of CoCrCuFeNiSi x high entropy alloys [J]. J Alloys Compound., 2018, 748: 889
37 Xiao J K, Tan H, Chen J, et al. Effect of carbon content on microstructure, hardness and wear resistance of CoCrFeMnNiC x high-entropy alloys [J]. J. Alloys Compound., 2020, 847: 156533
38 Toroghinejad M R, Ebrahimi F, Shabani A. Synthesis of the AlCrCuMnNi high entropy alloy through mechanical alloying and spark plasma sintering and investigation of its wear behavior [J]. J. Mater. Res. Technol., 2022, 21: 3262
39 Cheng J, Sun B, Ge Y, et al. Nb doping in laser-cladded Fe25Co25Ni25(B0.7Si0.3)25 high entropy alloy coatings: Microstructure evolution and wear behavior [J]. Surf. Coat. Technol., 2020, 402: 126321
40 Brito C, Vida T, Freitas E, et al. Cellular/dendritic arrays and intermetallic phases affecting corrosion and mechanical resistances of an Al-Mg-Si alloy [J]. J. Alloys Compound., 2016, 673: 220
41 Wang N, Wang R, Feng Y, et al. Discharge and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery [J]. Corr. Sci., 2016, 112: 13
42 Bommersbach P, Alemany-Dumont C, Millet J P, et al. Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods [J]. Electrochim. Acta, 2005, 51(6): 1076
43 Della Rovere C A, Alano J H, Silva R, et al. Characterization of passive films on shape memory stainless steels [J]. Corr. Sci., 2012, 57: 154
44 Bogdanov R I, Vorkel V A, Ignatenko V E, et al. Corrosion and electrochemical behavior of CoСrFeNiMo high-entropy alloy in acidic oxidizing and neutral chloride solutions [J]. Mater. Chem. Phys., 2023, 295: 127123
[1] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] CEN Yaodong, JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui. Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel[J]. 材料研究学报, 2024, 38(9): 711-720.
[3] WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. 材料研究学报, 2024, 38(9): 701-710.
[4] SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide[J]. 材料研究学报, 2024, 38(9): 680-690.
[5] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
[6] LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. 材料研究学报, 2024, 38(8): 621-631.
[7] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[8] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[9] LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. 材料研究学报, 2024, 38(8): 561-568.
[10] WANG Jinlong, WANG Huiming, LI Yingju, ZHANG Hongyi, LV Xiaoren. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. 材料研究学报, 2024, 38(7): 481-489.
[11] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
[12] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[13] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[14] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[15] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
No Suggested Reading articles found!