Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (4): 291-300    DOI: 10.11901/1005.3093.2022.231
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+
YU Moxin1,2, ZHANG Shuhai1, ZHU Bowen1, ZHANG Chen1, WANG Xiaoting1,3(), BAO Jiamin1, WU Xiang1
1.School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243000, China
2.Sinosteel New Materials Co. Ltd., Ma'anshan 243000, China
3.Magang (Group) Holding Co. Ltd., Ma'anshan 243003, China
Cite this article: 

YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+. Chinese Journal of Materials Research, 2023, 37(4): 291-300.

Download:  HTML  PDF(9012KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The nitrogen-doped biochar (NBC x ) was prepared from aloe vera leaf rind with adding urea as nitrogen source, namely the biochar (NBC x ) was first prepared by hydrothermal method, and then the mixture of NBC x and urea was pyrolyzed at different temperatures. The as-made NBC x was characterized by SEM、BET、XPS、FTIR and Zeta, and its application for adsorption of Co2+ in waste water was investigated. The results show that the NBC x has a hierarchical porous structure with a lamellar-like surface with many small flakes. The NBC800, prepared with the mass ratio 2∶1 for aloe vera leaf rind to urea by final pyrolysis temperature of 800℃, presents a specific surface area of 32 m2·g-1, and a total pore volume of 0.04 cm3·g-1 with the non-microporous ratio of up to 75%. The surface of NBC800 is rich in oxygen and nitrogen functional groups, and the content of N and O (mole fraction) is up to 3.89% and 46.35% respectively, which can react with Co2+ through ion exchange, electrostatic adsorption, complexation and co-precipitation. The Langmuir model fits well with the adsorption isotherm of Co2+ on NBC x, which demonstrated that the adsorption is monolayered. The maximum adsorption capacity of Co2+ on NBC800 is up to 228.31 mg·g-1. The quasi-second-order kinetic model can describe the adsorption process better. The adsorption rate is mainly controlled by chemical adsorption.

Key words:  inorganic non-metallic materials      aloe vera leaf rind      biochar      N-doped      Co2+      chemical adsorption     
Received:  24 April 2022     
ZTFLH:  O647.3  
Fund: Anhui Province Postdoctoral Science Research Program(2021B547);Natural Science Research Project of Anhui Province(KJ2021A0399)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.231     OR     https://www.cjmr.org/EN/Y2023/V37/I4/291

Fig.1  SEM images of the samples NBC600 (a), NBC700 (b), NBC800 (c) and NBC800⁃Co2+ (d)
Fig.2  N2 adsorption-desorption isotherm of NBC x
Fig.3  Pore size distribution of NBC x
Samples

Dap

/nm

SBET

/m2·g-1

Smic

/m2·g-1

Vt

/cm3·g-1

Vmic

/cm3·g-1

Non-Vmic/Vt
NBC6004.5833180.030.020.33
NBC7003.4269480.050.030.40
NBC8005.6832150.040.010.75
NBC800-Co2+4.003252490.300.150.50
Table 1  Specific surface area and pore structure parameters of NBC x
Fig.4  XPS spectra of the samples (a) survey spectra of NBC800; (b) O1s spectrum of NBC800; (c) N1s spectrum of NBC800; (d) survey spectra of NBC800-Co2+; (e) O1s spectrum of NBC800-Co2+; (f) N1s spectrum of NBC800-Co2+; (g) Co2p spectrum of NBC800-Co2+
SamplesC1sO1sN1sCo2p
NBC60082.416.41.2-
NBC70080.917.41.7-
NBC80049.7646.353.89-
NBC800-Co2+40.5441.613.9213.93
Table 2  Elements content of XPS analysis (mole fraction, %)
Samples-OHC=OC-OOxide-NGraphitic-NPyrolic-NPyridinic-NCo3+Co2+
NBC6004.636.375.400.190.240.380.39--
NBC7004.677.854.880.160.170.750.62--
NBC80014.2021.6910.460.360.412.051.07--
NBC800-Co2+13.2514.2814.080.421.121.510.874.978.96
Table 3  Functional group content of O1s spectrum, N1s spectrum and Co2p spectrum in XPS analysis (mole fraction, %)
Fig.5  FTIR diagram of NBC800 before and after Co2+ adsorption
Fig.6  Zeta potential diagram of NBC x
Fig.7  Adsorption isotherm of Co2+ by NBC x and Langmuir model fitting (a) adsorption isotherm curve; (b) Langmuir model fitting diagram
Fig.8  Adsorption kinetics curve of Co2+ by NBC x and fitting of pseudo-second-order kinetics model (a) adsorption kinetics curve; (b) fitting diagram of pseudo-second-order dynamics model
Fig.9  Breakthrough curve for Co2+ dynamic adsorption on NBC800
Fig.10  Curve of effect of NBC800 mass on Co2+ adsorption
Fig.11  Adsorption mechanism of Co2+ on NBC x
1 Saad D R, Alismaeel Z T, Abbar A H. Cobalt removal from simulated wastewaters using a novel flow-by fixed bed bio-electrochemical reactor[J]. Chem. Eng. Process. Process Intensif., 2020, 156: 108097
doi: 10.1016/j.cep.2020.108097
2 Lawan I Y, Yamta S D, Hudu A, et al. Adsorption capabilities of activated carbon derived from detarium microcarpum seeds in removing Co2+ and Pb2+ from wastewater[J]. Earthline J. Chem. Sci., 2020, 3: 167
3 Sayadi M H, Rezaei M R, Rezaei A. Fraction distribution and bioavailability of sediment heavy metals in the environment surrounding MSW landfill: a case study[J]. Environ. Monit. Assess., 2015, 187(1): 4110
doi: 10.1007/s10661-014-4110-1 pmid: 25433542
4 Lucaci A R, Bulgariu D, Ahmad I, et al. Potential use of biochar from various waste biomass as biosorbent in Co(II) removal processes[J]. Water, 2019, 11(8): 1565
doi: 10.3390/w11081565
5 Mandal S, Calderon J, Marpu S B, et al. Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: characterization, adsorption kinetics, and isotherm studies[J]. J. Contam. Hydrol., 2021, 243: 103869
doi: 10.1016/j.jconhyd.2021.103869
6 Peyravi A, Feizbakhshan M, Hashisho Z, et al. Purge gas humidity improves microwave-assisted regeneration of polymeric and zeolite adsorbents[J]. Sep. Purif. Technol., 2022, 288: 120640
doi: 10.1016/j.seppur.2022.120640
7 Liu Z, Solliec M, Papineau I, et al. Elucidating the removal of organic micropollutants on biological ion exchange resins[J]. Sci. Total Environ., 2022, 808: 152137
doi: 10.1016/j.scitotenv.2021.152137
8 Upadhyay U, Sreedhar I, Singh S A, et al. Recent advances in heavy metal removal by chitosan based adsorbents[J]. Carbohydr. Polym., 2021, 251: 117000
doi: 10.1016/j.carbpol.2020.117000
9 Li A Y, Zhang Y, Ge W Z, et al. Removal of heavy metals from wastewaters with biochar pyrolyzed from MgAl-layered double hydroxide-coated rice husk: Mechanism and application[J]. Bioresour. Technol., 2022, 347: 126425
doi: 10.1016/j.biortech.2021.126425
10 Mariana M, Khalil H P S A, Mistar E M, et al. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption[J]. J. Water Process Eng., 2021, 43: 102221
doi: 10.1016/j.jwpe.2021.102221
11 Liu M S, Almatrafi E, Zhang Y, et al. A critical review of biochar-based materials for the remediation of heavy metal contaminated environment: applications and practical evaluations[J]. Sci. Total Environ., 2022, 806: 150531
doi: 10.1016/j.scitotenv.2021.150531
12 Jjagwe J, Olupot P W, Menya E, et al. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: a review[J]. J. Bioresourc. Bioprod., 2021, 6(4): 292
doi: 10.1016/j.jobab.2021.03.003
13 Danish M, Ahmad T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application[J]. Renew. Sust. Energy Rev., 2018, 87: 1
14 Yu J X, Yu M X, Kuai L, et al. Preparation of high oxygen porous carbon from walnut peel and its adsorption properties for Ni2+ [J]. Chem. J. Chin. Univ., 2020, 41(11): 2464
余健星, 余谟鑫, 蒯 乐 等. 核桃青皮制备高含氧量多孔炭及其对Ni2+的吸附性能[J]. 高等学校化学学报, 2020, 41(11): 2464
15 Aboli E, Jafari D, Esmaeili H. Heavy metal ions (lead, cobalt, and nickel) biosorption from aqueous solution onto activated carbon prepared from Citrus limetta leaves[J]. Carbon Lett., 2020, 30(6): 683
doi: 10.1007/s42823-020-00141-1
16 Arnelli, Wahyuningrum V N, Fauziah F, et al. Synthesis of surfactant modified activated carbon (SMAC) from rice husks as Ni(II) and Cr(VI) adsorbent[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 509: 012023
17 Abedi S, Mousavi H Z, Asghari A. Investigation of heavy metal ions adsorption by magnetically modified aloe vera leaves ash based on equilibrium, kinetic and thermodynamic studies[J]. Desalin. Water Treat., 2016, 57(29): 13747
doi: 10.1080/19443994.2015.1060536
18 Giannakoudakis D A, Hosseini-Bandegharaei A, Tsafrakidou P, et al. Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: a review[J]. J. Environ. Manage., 2018, 227: 354
doi: S0301-4797(18)30938-1 pmid: 30199731
19 Bakry A M, Awad F S, Bobb J A, et al. Multifunctional binding sites on Nitrogen-doped carboxylated porous carbon for highly efficient adsorption of Pb(II), Hg(II), and Cr(VI) Ions[J]. ACS Omega, 2020, 5(51): 33090
doi: 10.1021/acsomega.0c04695 pmid: 33403271
20 Yuan Y, An Z X, Zhang R J, et al. Efficiencies and mechanisms of heavy metals adsorption on waste leather-derived high-nitrogen activated carbon[J]. J. Cleaner Prod., 2021, 293: 126215
doi: 10.1016/j.jclepro.2021.126215
21 Kasera N, Hall S, Kolar P. Effect of surface modification by nitrogen-containing chemicals on morphology and surface characteristics of N-doped pine bark biochars[J]. J. Environ. Chem. Eng., 2021, 9(2): 105161
doi: 10.1016/j.jece.2021.105161
22 Gunjate J K, Meshram Y K, Khope R U, et al. Adsorption based recovery of cobalt using chemically modified activated carbon[J]. Mater. Today Proc., 2020, 29: 1150
23 Ullah M, Nazir R, Khan M, et al. The effective removal of heavy metals from water by activated carbon adsorbents of Albizia lebbeck and Melia azedarach seed shells[J]. Soil Water Res., 2019, 15(1): 30
doi: 10.17221/212/2018-SWR
24 Bilal M, Ali J, Hussain N, et al. Removal of Pb(II) from wastewater using activated carbon prepared from the seeds of Reptonia buxifolia [J]. J. Serb. Chem. Soc., 2020, 85(2): 265
doi: 10.2298/JSC181108001B
25 Kwak J H, Islam S, Wang S Y, et al. Biochar properties and lead (II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation[J]. Chemosphere, 2019, 231: 393
doi: 10.1016/j.chemosphere.2019.05.128
26 Saad M J, Sajab M S, Busu W N W, et al. Comparative adsorption mechanism of rice straw activated carbon activated with NaOH and KOH[J]. Sains Malays., 2020, 49(11): 2721
27 Mustapha S, Shuaib D T, Ndamitso M M, et al. Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb(II), Cd(II), Zn(II) and Cu(II) ions from aqueous solutions using Albizia lebbeck pods[J]. Appl. Water Sci., 2019, 9: 142
doi: 10.1007/s13201-019-1021-x
28 Li A Y, Deng H, Jiang Y H, et al. Superefficient removal of heavy metals from wastewater by Mg-Loaded biochars: adsorption characteristics and removal mechanisms[J]. Langmuir, 2020, 36(31): 9160
doi: 10.1021/acs.langmuir.0c01454 pmid: 32644798
29 Yan C Z, Kim M G, Hwang H U, et al. Adsorption of heavy metals using activated carbon synthesized from the residues of medicinal herbs[J]. Theor. Found. Chem. Eng., 2020, 54(5): 973
doi: 10.1134/S0040579520050474
30 Sun J T, Li M F, Zhang Z H, et al. Unravelling the adsorption disparity mechanism of heavy-metal ions on the biomass-derived hierarchically porous carbon[J]. Appl. Surf. Sci., 2019, 471: 615
doi: 10.1016/j.apsusc.2018.12.050
31 Wang G Y, Dai Y J, Yang H P, et al. A review of recent advances in biomass pyrolysis[J]. Energy Fuels, 2020, 34(12): 15557
doi: 10.1021/acs.energyfuels.0c03107
32 Dinh V C, Hou C H, Dao T N. O, N-doped porous biochar by air oxidation for enhancing heavy metal removal: The role of O, N functional groups[J]. Chemosphere, 2022, 293: 133622
doi: 10.1016/j.chemosphere.2022.133622
33 Lin S W, Yang X, Liu L H, et al. Electrosorption of cadmium and arsenic from wastewaters using nitrogen-doped biochar: mechanism and application[J]. J. Environ. Manage., 2022, 301: 113921
doi: 10.1016/j.jenvman.2021.113921
34 Yang Q, Cui P X, Liu C, et al. In situ stabilization of the adsorbed Co2+ and Ni2+ in rice straw biochar based on LDH and its reutilization in the activation of peroxymonosulfate[J]. J. Hazard. Mater., 2021, 416: 126215
doi: 10.1016/j.jhazmat.2021.126215
35 Gholizadeh M, Hu X. Removal of heavy metals from soil with biochar composite: a critical review of the mechanism[J]. J. Environ. Chem. Eng., 2021, 9: 105830
doi: 10.1016/j.jece.2021.105830
36 Chen W H, Hoang A T, Nižetić S, et al. Biomass-derived biochar: from production to application in removing heavy metal-contaminated water[J]. Process Saf. Environ. Prot., 2022, 160: 704
doi: 10.1016/j.psep.2022.02.061
37 Yuan X L, An N H, Zhu Z X, et al. Hierarchically porous nitrogen-doped carbon materials as efficient adsorbents for removal of heavy metal ions[J]. Process Saf. Environ. Prot., 2018, 119: 320
doi: 10.1016/j.psep.2018.08.012
38 Kyzas G Z, Deliyanni E A, Matis K A. Activated carbons produced by pyrolysis of waste potato peels: cobalt ions removal by adsorption[J]. Colloids Surf., 2016, 490A: 74
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[7] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[8] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[9] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[10] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[11] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[12] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[13] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[14] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[15] WANG Yihao, WU Qiong, LI Pengfei, YANG Zhanxin, ZHANG Hongtao. Preparation and Supercapacitor Performance of Few-Layered Ti3C2 with High Specific Capacitance[J]. 材料研究学报, 2022, 36(3): 183-190.
No Suggested Reading articles found!