Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (3): 183-190    DOI: 10.11901/1005.3093.2021.441
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Supercapacitor Performance of Few-Layered Ti3C2 with High Specific Capacitance
WANG Yihao1, WU Qiong1(), LI Pengfei1, YANG Zhanxin1, ZHANG Hongtao2
1.School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
2.Liaoning Zhongse Xincai Technology Co. , Ltd, Jinzhou 121000, China
Cite this article: 

WANG Yihao, WU Qiong, LI Pengfei, YANG Zhanxin, ZHANG Hongtao. Preparation and Supercapacitor Performance of Few-Layered Ti3C2 with High Specific Capacitance. Chinese Journal of Materials Research, 2022, 36(3): 183-190.

Download:  HTML  PDF(11011KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microwaves assisted selective etching technique was used to prepare few-layered Ti3C2 with atomic layer spacing of 1.28 nm. The mass specific capacitance is 377.64 F/g, which is 154.27% higher than that of multilayer Ti3C2. The kinetic analysis of two kinds of Ti3C2 electrochemical storage processes shows that the charge storage of few-layered Ti3C2 is mainly contributed by surface capacitance, which is 76.28%.

Key words:  inorganic non-metallic materials      microwave assisted etching      few-layered Ti3C2      specific capacitance     
Received:  13 August 2021     
ZTFLH:  TQ152  
Fund: National Natural Science Foundation of China(51971106)
About author:  WU Qiong, E-mail: wuqiong9918@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.441     OR     https://www.cjmr.org/EN/Y2022/V36/I3/183

Fig.1  Schematic diagram and structure of few-layered Ti3C2 prepared by microwave assisted etching of hexagonal Ti3AlC2 (a) schematic diagram of microwave assisted etching device and reaction in cavity; (b, c) XRD of two kinds of Ti3C2
Fig.2  Morphology of Ti3C2 after microwave assisted etching
Fig.3  Microstructure of multilayer Ti3C2 and few-layered Ti3C2 (a, c, d, e) TEM and SAED images of multilayer Ti3C2 along the [110] crystal axis; (f, h, i, j) TEM and SAED images of multilayer Ti3C2 along the [0001] crystal axis; (b, g) molecular models of the two kinds of Ti3C2
Fig.4  Supercapacitor performance graph of multilayer Ti3C2 and few-layered Ti3C2 (a, b) CV curves; (c, d) GCD curves; (e) Long cycle charge-discharge cycle performance
Fig.5  Kinetic analysis of electrochemical energy storage process of multilayer Ti3C2 and few-layered Ti3C2 (a) current response plotted against scan rate at different voltages; (b, c) surface capacitance contribution to the total charge of multilayer Ti3C2 and few-layerd Ti3C2; (d) percentage of surface capacitance contribution at different scan rates
1 Luo Y., Tian Y., Tang Y., Yin X., Que W., 2D hierarchical nickel cobalt sulfides coupled with ultrathin titanium carbide (MXene) nanosheets for hybrid supercapacitors [J]. Journal of Power Sources, 2021, 482: 228961
2 Shang M., Chen X., Li B., Niu J., A Fast Charge/Discharge and Wide-Temperature Battery with a Germanium Oxide Layer on a Ti 3 C2 MXene Matrix as Anode [J]. ACS Nano, 2020, 14: 3678
3 Song X., Luo W., Nan Y.. A review for synthesis and applications of carbon nanohorns [J]. Chin. J. Mater. Res., 2021, 35(6): 401
宋小龙, 骆伟静, 南艳丽. 碳纳米角的制备及其应用进展 [J]. 材料研究学报,2021, 35(6): 401
4 Qin T., Zhang X., Wang D., Deng T., Wang H., Liu X., Shi X., Li Z., Chen H., Meng X., Zhang W., Zheng W., Oxygen Vacancies Boost delta-Bi 2 O3 as a High-Performance Electrode for Rechargeable Aqueous Batteries [J]. ACS Appl Mater Interfaces, 2019, 11: 2103
5 Ghidiu M., Lukatskaya M.R., Zhao M.Q., Gogotsi Y., Barsoum M.W., Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance [J]. Nature, 2014, 516: 78
6 Li L., Zhang M., Zhang X., Zhang Z., Ti New 3 C2 aerogel as promising negative electrode materials for asymmetric supercapacitors [J]. Journal of Power Sources, 2017, 364: 234
7 Mashtalir O., Naguib M., Mochalin V.N., Dall'Agnese Y., Heon M., Barsoum M.W., Gogotsi Y., Intercalation and delamination of layered carbides and carbonitrides [J]. Nat Commun, 2013, 4: 1716
8 Lukatskaya M.R., Kota S., Lin Z., Zhao M.-Q., Shpigel N., Levi M.D., Halim J., Taberna P.-L., Barsoum M.W., Simon P., Gogotsi Y., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides [J]. Nature Energy, 2017, 2: 17105
9 Jun B. -M., Kim S., Heo J., Park C. M., Her N., Jang M., Huang Y., Han J., Yoon Y., Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications [J]. Nano Research, 2018, 12: 471
10 Li T., Yao L., Liu Q., Gu J., Luo R., Li J., Yan X., Wang W., Pan L., Chen B., Fluorine-Free Synthesis of High-Purity Ti 3 C2T x (T=OH, O) via Alkali Treatment [J]. Angew Chem Int Ed Engl, 2018, 57: 6115
11 Lukatskaya M.R., Mashtalir O., Ren C.E., Dall'Agnese Y., Rozier P., Taberna P.L., Naguib M., Simon P., Barsoum M.W., Gogotsi Y., Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide [J]. Science, 2013, 341: 1502
12 Sang X., Xie Y., Yilmaz D.E., Lotfi R., Alhabeb M., Ostadhossein A., Anasori B., Sun W., Li X., Xiao K., Kent P.R.C., van Duin A.C.T., Gogotsi Y., Unocic R.R., In situ atomistic insight into the growth mechanisms of single layer 2 D transition metal carbides [J]. Nat Commun, 2018, 9: 2266
13 Huang H., Chu X., Su H., Zhang H., Xie Y., Deng W., Chen N., Liu F., Zhang H., Gu B., Deng W., Yang W., Massively manufactured paper-based all-solid-state flexible micro-supercapacitors with sprayable MXene conductive inks [J]. Journal of Power Sources, 2019, 415: 1
14 Li L., Zhang N., Zhang M., Zhang X., Zhang Z., Ti Flexible 3 C2T x /PEDOT:PSS films with outstanding volumetric capacitance for asymmetric supercapacitors [J]. Dalton Transactions, 2019, 48: 1747
15 Ming F., Liang H., Huang G., Bayhan Z., Alshareef H. N., MXenes for Rechargeable Batteries Beyond the Lithium-Ion [J]. Adv Mater, 2021, 33: e2004039
16 Vaghasiya J.V., Mayorga-Martinez C.C., Sofer Z., Pumera M., Flexible MXene-Based Supercapacitors : Influence of an Organic Ionic Conductor Electrolyte on the Performance [J]. ACS Appl Mater Interfaces, 2020, 12: 53039
17 Ma J., Liu C., Ti 3 C2 wrapped Prussian blue skeleton as an anode for potassium-ion battery [J]. Journal of Power Sources, 2021, 484: 229276
18 Li L., Wen J., Zhang X., Progress of Two‐Dimensional Ti 3 C2T x in Supercapacitors [J]. ChemSusChem, 2020, 13: 1296
19 Gao X., Du X., Mathis T.S., Zhang M., Wang X., Shui J., Gogotsi Y., Xu M., Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage [J]. Nat Commun, 2020, 11: 6160
20 Tahir K., Miran W., Jang J., Maile N., Shahzad A., Moztahida M., Ghani A. A., Kim B., Jeon H., Lim S. R., Lee D. S., Nickel ferrite/MXene-coated carbon felt anodes for enhanced microbial fuel cell performance [J]. Chemosphere, 2020, 268: 128784
21 Lu M., Zhang Y., Chen J., Han W., Zhang W., Li H., Zhang X., Zhang B., K+ alkalization promoted Ca 2 + intercalation in V2CT MXene for enhanced Li storage [J]. Journal of Energy Chemistry, 2020, 49: 358
22 Zhao X, Vashisth A, Prehn E, Sun W, Green MJ, Antioxidants Unlock Shelf-Stable Ti 3 C2T x (MXene) Nanosheet Dispersions [J]. Matter, 2019, 1: 513
23 Natu V., Hart J.L., Sokol M., Chiang H., Taheri M.L., Barsoum M.W., Edge Capping of 2 D-MXene Sheets with Polyanionic Salts To Mitigate Oxidation in Aqueous Colloidal Suspensions [J]. Angew Chem Int Ed Engl, 2019, 58: 12655
24 Hart J.L., Hantanasirisakul K., Lang A.C., Anasori B., Pinto D., Pivak Y., van Omme J.T., May S.J., Gogotsi Y., Taheri M.L., Control of MXenes' electronic properties through termination and intercalation [J]. Nat Commun, 2019, 10: 522
25 Cai Y., Shen J., Yang C.-W., Wan Y., Tang H.-L., Aljarb A.A., Chen C., Fu J.-H., Wei X., K. -W. Huang, Y. Han, S.J. Jonas, X. Dong, V. Tung, Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range [J]. Science Advances, 2020, 6: eabb5367
26 Pan Z., Ji X., Facile synthesis of nitrogen and oxygen co-doped C@Ti 3 C2 MXene for high performance symmetric supercapacitors [J]. Journal of Power Sources, 2019, 439: 227068
27 Bak S-M, Qiao R M, Yang W L. Na-Ion Intercalation and Charge Storage Mechanism in 2D Vanadium Carbide [J]. Adv Energy Mater, 2017, 7(20): 1700959
28 Yang Z., Wu Q., Ren Y., et al. Massive preparation and supercapacitor performance of layered Ti3C2 [J]. Chin. J. Mater. Res., 2020, 34(11): 861
杨占鑫, 吴 琼, 任奕桥 等. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861
29 Liu S., Hu F., Shao W., Zhang W., Zhang T., Song C., Yao M., Huang H., Jian X.. A novel strategy of in situ trimerization of cyano groups between the Ti3C2T x (MXene) interlayers for high-energy and high-power sodium-ion capacitors [J]. Nano-Micro Letters, 2020, 12: 135
30 Wu Q., Ren Y., Li P., Wang Y., Yang Z., Qu K., Qi G., Chen S., Wu F., MXene titanium carbide with high specific capacitance fabricated by microwave-assisted selective etching [J]. Applied Physics A, 2021, 127: 360
31 Wu Q., Wang Y., Li P., Chen S., Wu F.. Electrochemical performance and charge storage mechanism of few-layer MXene titanium carbide for supercapacitors [J]. Journal of The Electrochemical Society, 2021, 168(9): 090549
32 Wu Q., Wang Y., Li P., Chen S., Wu F.. Microwave-assisted synthesis of few-layered MXene Ti3C2 with high specific capacitance and low impedance for supercapacitor [J]. Applied Physics A, 2021, 127(11): 822
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!