Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (4): 301-307    DOI: 10.11901/1005.3093.2022.266
ARTICLES Current Issue | Archive | Adv Search |
Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy
DU Feifei1, LI Chao2,3, LI Xianliang2,4, ZHOU Yaoyao2, YAN Gengxu1, LI Guojian2(), WANG Qiang2
1.Shenyang Heshitai General Titanium Industry Co. Ltd., Shenyang 110206, China
2.Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
3.School of Metallurgy, Northeastern University, Shenyang 110819, China
4.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Cite this article: 

DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy. Chinese Journal of Materials Research, 2023, 37(4): 301-307.

Download:  HTML  PDF(11058KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to solve the problem of coating failure caused by cutting heat due to hard coatings with a high coefficient of friction (COF) when cutting titanium alloy, TiAl-TaN/TaO/WS composite coatings were prepared on cutters by magnetron sputtering. The coatings were composed of Ti buffer layer, TiAl-TaN layer with high wear resistance, TaO with low adhesive property and WS with low COF. The surface morphology of coatings changes from polyhedral granula (of TiAlTaN coating) to spherical granula (of composite coating), but the phase composition and columnar crystal structure of coatings are not affected. The composites can not only reduce the hardness and elastic modulus of the coatings, but also decrease the COF of the coatings from 0.648 of the TiAlN coatings to 0.102 of the composite coatings. Due to the low COF, the composite coatings show beneficial lubrication effect, the life of the cutters with composite coatings is 84% higher than that without coating and 33% higher than that with ordinary commercial coating respectively for cutting titanium alloy. Therefore, it provides a new tool coating that can be used for cutting titanium alloy.

Key words:  metallic materials      tool coating      functional composite      titanium alloy cutting     
Received:  09 May 2022     
ZTFLH:  TG174.444  
Fund: State Administration of Science, Technology and Industry for National Defense of China(JCKY2020110C004)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.266     OR     https://www.cjmr.org/EN/Y2023/V37/I4/301

LayerFunctionTarget

Power

/ W

Temperature

/ oC

Thickness

/ nm

Pressure

/ Pa

O2 pressure

/ Pa

TiBuffer layerTi700500
Gradient TiAlTaNHard layerTiAl7003500
Ta4503503503×10-30
TaOLow adhesive wear layerTa1001600.15
WSLow friction coefficient layerWS1251200
Table 1  Deposition parameters of the TiAlTaN low-affinity and self-lubricating functional composite coatings
Fig.1  SEM morphologies of the TiAlTaN composite coatings (a) TiAlTaN coatings; (b) TiAlTaN/TaO composite coatings; (c) TiAlTaN/TaO/WS composite coatings
Fig.2  EDS results of the TiAlTaN composite coatings (a) TiAlTaN coatings; (b) TiAlTaN/TaO composite coatings; (c) TiAlTaN/TaO/WS composite coatings
Fig.3  SEM morphology and EDS mapping of the TiAlTaN/TaO/WS composite coatings (a) cross section morphology; (b) W element; (c) S element; (d) Ta element; (e) O element
Fig.4  XRD patterns (a) and enlarged patterns (b) of the TiAlTaN coatings, the TiAlTaN/TaO composite coatings, and the TiAlTaN/TaO/WS composite coatings
Fig.5  Overall scratch SEM morphology (a) and enlarged morphologies (b, c), scratch acoustic signal curves (d) and EDS results (e) of the TiAlTaN/TaO/WS composite coatings
Fig.6  Coefficient of friction, hardness and elasticity modulus of the TiAlTaN coatings, the TiAlTaN/TaO composite coatings, and the TiAlTaN/TaO/WS composite coatings
Fig.7  Nano indentation SEM morphologies of the TiAlTaN/TaO composite coatings and the TiAlTaN/TaO/WS composite coatings under different loading forces (a, d) 25 g; (b, e) 50 g; (c, f) 100 g
Fig.8  Cutting length and flank metallurgical morphologies of uncoated, commercialized and the TiAlTaN/TaO/WS composite coated tools when milling titanium alloy at a speed of 41 m/min
1 Saini A, Pabla B S, Dhami S S. Developments in cutting tool technology in improving machinability of Ti6Al4V alloy: A review[J]. Proc. Inst. Mech. Eng., 2016, 230B(11) : 1977
2 Wang B, Liu Z Q, Cai Y K, et al. Advancements in material removal mechanism and surface integrity of high speed metal cutting: A review[J]. Int. J. Mach. Tools Manuf., 2021, 166: 103744
doi: 10.1016/j.ijmachtools.2021.103744
3 Choudhary A, Paul S. Performance evaluation of PVD TiAlN coated carbide tools vis-à-vis uncoated carbide tool in turning of titanium alloy (Ti-6Al-4V) by simultaneous minimization of cutting energy, dimensional deviation and tool wear[J]. Mach. Sci. Technol., 2019, 23(3): 368
doi: 10.1080/10910344.2018.1486421
4 Alhafian M R, Chemin J B, Fleming Y, et al. Comparison on the structural, mechanical and tribological properties of TiAlN coatings deposited by HiPIMS and Cathodic Arc Evaporation[J]. Surf. Coat. Technol., 2021, 423: 127529
doi: 10.1016/j.surfcoat.2021.127529
5 Veiga F, Arizmendi M, Jiménez A, et al. Analytical thermal model of orthogonal cutting process for predicting the temperature of the cutting tool with temperature-dependent thermal conductivity[J]. Int. J. Mech. Sci., 2021, 204: 106524
doi: 10.1016/j.ijmecsci.2021.106524
6 Akhtar S S. A critical review on self-lubricating ceramic-composite cutting tools[J]. Ceram. Int., 2021, 47(15): 20745
doi: 10.1016/j.ceramint.2021.04.094
7 Liu Z Q, An Q L, Xu J Y, et al. Wear performance of (nc-AlTiN)/(a-Si3N4) coating and (nc-AlCrN)/(a-Si3N4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions[J]. Wear, 2013, 305(1-2): 249
doi: 10.1016/j.wear.2013.02.001
8 Li A H, Zhao J, Luo H B, et al. Progressive tool failure in high-speed dry milling of Ti-6Al-4V alloy with coated carbide tools[J]. Int. J. Adv. Manuf. Technol., 2012, 58(5-8): 465
doi: 10.1007/s00170-011-3408-1
9 Zhang W. A novel ceramic with low friction and wear toward tribological applications: Boron carbide-silicon carbide[J]. Adv. Colloid Interface Sci., 2022, 301: 102604
doi: 10.1016/j.cis.2022.102604
10 Erdemir A, Martin J M. Superior wear resistance of diamond and DLC coatings[J]. Curr. Opin. Solid State Mater. Sci., 2018, 22(6): 243
doi: 10.1016/j.cossms.2018.11.003
11 Gong H J, Yu C C, Zhang L, et al. Intelligent lubricating materials: a review[J]. Composites, 2020, 202B: 108450
12 Li X M, Deng J X, Lu Y, et al. Tribological behavior of ZrO2/WS2 coating surfaces with biomimetic shark-skin structure[J]. Ceram. Int., 2019, 45(17): 21759
doi: 10.1016/j.ceramint.2019.07.177
13 Serra E C, Soares V F D, Fernandez D A R, et al. Influence of WS2 content on high temperature wear performance of magnetron sputtered TiN-WS x thin films[J]. Ceram. Int., 2019, 45(16): 19918
doi: 10.1016/j.ceramint.2019.06.248
14 Li G J, Lü W Z, Liu S Y, et al. Multilayer-growth of TiAlN/WS self-lubricating composite coatings with high adhesion and their cutting performance on titanium alloy[J]. Composites, 2021, 211B: 108620
15 Chang S Y, Lin S Y, Huang Y C, et al. Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)N x multi-component coatings[J]. Surf. Coat. Technol., 2010, 204(20): 3307
doi: 10.1016/j.surfcoat.2010.03.041
16 Xue P D, Yang L, Diao D F. Nanocrystalline/amorphous biphase enhanced mechanical properties in multilayer carbon films[J]. Surf. Coat. Technol., 2018, 334: 1
doi: 10.1016/j.surfcoat.2017.10.061
17 Sui X D, Li G J, Jiang C J, et al. Effect of Ta content on microstructure, hardness and oxidation resistance of TiAlTaN coatings[J]. Int. J. Refract. Met. Hard Mater., 2016, 58: 152
doi: 10.1016/j.ijrmhm.2016.04.014
18 Kiryukhantsev-Korneev P V, Sytchenko A D, Gorshkov V A, et al. Complex study of protective Cr3C2-NiAl coatings deposited by vacuum electro-spark alloying, pulsed cathodic arc evaporation, magnetron sputtering, and hybrid technology[J]. Ceram. Int., 2022, 48(8): 10921
doi: 10.1016/j.ceramint.2021.12.311
19 Lü W Z, Li G J, Zhou Y Y, et al. Effect of high hardness and adhesion of gradient TiAlSiN coating on cutting performance of titanium alloy[J]. J. Alloys Compd., 2020, 820: 153137
doi: 10.1016/j.jallcom.2019.153137
20 Rodrigues S P, Evaristo M, Carvalho S, et al. Fluorine-carbon doping of WS-based coatings deposited by reactive magnetron sputtering for low friction purposes[J]. Appl. Surf. Sci., 2018, 445: 575
doi: 10.1016/j.apsusc.2018.03.113
21 Sui X D, Li G J, Jiang C J, et al. Improved toughness of layered architecture TiAlN/CrN coatings for titanium high speed cutting[J]. Ceram. Int., 2018, 44(5): 5629
doi: 10.1016/j.ceramint.2017.12.210
22 Grigoriev S, Vereschak A, Milovich F, et al. Investigation of the properties of Ti-TiN-(Ti, Al, Nb, Zr)N composite coating and its efficiency in increasing wear resistance of metal cutting tools[J]. Surf. Coat. Technol., 2021, 421: 127432
doi: 10.1016/j.surfcoat.2021.127432
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!