Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (5): 345-352    DOI: 10.11901/1005.3093.2019.543
ARTICLES Current Issue | Archive | Adv Search |
Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating
LIANG Xinlei3, LIU Qian1,2, WANG Gang3, WANG Zhenyu1, HAN En-Hou1(), WANG Shuai1, YI Zuyao3, LI Na3
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3.Huadian Zhengzhou Mechanical Design Institute Co. , Ltd, Zhengzhou 450046, China
Cite this article: 

LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating. Chinese Journal of Materials Research, 2020, 34(5): 345-352.

Download:  HTML  PDF(2269KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Graphene oxide (GO) modified epoxy thermal insulation coatings were prepared by adding GO concentrates, then corrosion immersion test in 3.5%NaCl (mass fraction) solution at 50oC and thermal insulation effect before and after corrosion tests were comparatively measured. Electrochemical analysis shows that the coating modified with 0.5% GO has higher low-frequency resistance than that of coatings with 0% and 1.0% GO. Good surface morphologies were retained for coatings with GO addition after immersion in 3.5% NaCl solution (50oC) for 432 h. Meanwhile, no obvious cracks and corrosion products were detected on the coating/substrate interface. The coating without GO addition emerges obvious corrosion. The thermal insulation effect to a 250oC heat source of the above three coatings before corrosion test presents slight differences. Whereas, after 432 h corrosion immersion test the coating with 0% GO, 0.5% GO and 1.0% GO presents quite different in thermal insulation effect with temperature drop as 98oC, 123oC and 115oC for the coated substrate and decrease of bonding strength to the substrate as 3.9 MPa, 1.0 MPa, 2.3 MPa respectively. These results verify that the epoxy coating modified with 0.5% GO has the best corrosion resistance and thermal insulation performance.

Key words:  materials failure and protection      anti-corrosion and thermal insulation      graphene oxide modification      epoxy coating     
Received:  19 November 2019     
ZTFLH:  TG174  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.543     OR     https://www.cjmr.org/EN/Y2020/V34/I5/345

Fig.1  Testing device of coating thermal insulation performance
Fig.2  TEM images of graphene oxide and graphene oxide concentrates
Fig.3  EIS spectra of different coatings after immersing in 3.5% NaCl solution (50℃) for 24 h (a) Nyquist diagrams, (b) Bode plots
Fig.4  EIS spectra of different coatings after immersing in 3.5% NaCl solution (50℃) for 432 h (a) Nyquist diagrams, (b) Bode plots
Fig.5  Equivalent circuit used for modeling the impedance results Rs(Qcoat(Rcoat(QdlRct)))
Time / hSample

Rs

/Ω·cm2

Qcoat

/sn·Ω-1·cm-2

αcoat

Ceffcoat

/F·cm-2

Rcoat

/Ω·cm2

Rct

/Ω·cm2

24120.334.26 × 10-90.88274.90 × 10-101.17 × 1055.56 × 105
218.651.81 × 10-100.92254.26 × 10-103.11 × 1053.68 × 106
318.932.13 × 10-90.91914.76 × 10-103.00 × 1052.84 × 106
432122.316.48 × 10-90.87126.31 × 10-104.22 × 1031.41 × 104
218.982.51 × 10-100.90754.50 × 10-101.15 × 1055.14 × 105
319.524.18 × 10-90.88995.55 × 10-107.47 × 1043.31 × 105
Table 1  Fitting results of EIS for different coatings after immersing in 3.5% NaCl solution (50℃) for 24 h and 432 h
Fig.6  Optical photographs of coatings after immersing in 3.5% NaCl solution (50℃) for 432 h (a) No.1 coating, (b) No.2 coating, (c) No.3 coating
Fig.7  SEM images of coatings after immersing in 3.5% NaCl solution (50℃) for 432 h (a) No.1 coating, (b) No.2 coating, (c) No.3 coating
Fig.8  The cross section morphology of coatings after immersing in 3.5% NaCl solution (50℃) for 432 h (a) No.1 coating, (b) No.2 coating, (c) No.3 coating
Fig.9  Bonding strength for coatings after different immersion time in 3.5% NaCl solution (50℃)
Fig.10  Temperature difference - time insulation curve of coatings before immersion in 3.5% NaCl solution (50℃)
Fig.11  Temperature difference - time insulation curve of coatings after 432 h immersion in 3.5% NaCl solution (50℃)
Fig.12  Optical photographs of the coating samples before (a, b, c) and after (d, e, f) 30 cold-hot cycles
[1] Shinkareva E. V., Safonova A. M.. Conducting and heat-insulating paintwork materialsbased on nickel-plated glass spheres [J]. Glass Ceram+., 2006, 63(1): 32
[2] Ji Q, Ni Y R, Lu C H, et al. preparation and properties of hollow glass microspheres/PS insulation materials [J]. New Chem. Mater., 2012, 40(10): 32
(季清, 倪亚茹, 陆春华等. 空心玻璃微珠/PS隔热材料的制备及其性能 [J]. 化工新型材料, 2012, 40(10): 32)
[3] Wang J W, Zhang D W. study on thermal insulating performance of sepiolote/HGMs epoxy composite coating in Mg alloy [J]. Coat. Technol. Abstr., 2017, 38(9): 12
(王金伟, 张达威. 海泡石/空心微珠/环氧树脂复合涂层在镁合金表面的隔热性能研究 [J]. 涂料技术与文摘, 2017, 38(9): 12)
[4] Meng F D, Liu L, Tian W L, et al. The influence of the chemically bonded interface between fillers and binder on the failure behaviour of an epoxy coating under marine alternating hydrostatic pressure [J]. Corros. Sci., 2015, 101: 139
[5] Chang K C, Hsu M H, Lu H, et al. Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel [J]. Carbon, 2014, 66: 144
[6] Singhbabu Y N, Sivakumar B, Singh J K, et al. Efficient anti-corrosive coating of cold-rolled steel in a seawater environment using an oil-based graphene oxide ink [J]. Nanoscale, 2015, 7: 8035
[7] Yu Z X, Di H H, Ma Y, et al. Fabrication of graphene oxide–alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings [J]. Appl. Surf. Sci., 2015, 351: 986
[8] Singh B P, Nayak S, Nanda K K, et al. The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition [J]. Carbon, 2013, 61: 47
[9] Rajabi M, Rashed G R, Zaarei D, Assessment of graphene oxide/epoxy nanocomposite as corrosion resistance coating on carbon steel [J]. Corros. Eng. Sci. Technol. 2015, 50: 509
[10] Ramezanzadeh B, Haeri Z, Ramezanzadeh M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance [J]. Chem. Eng. J., 2016, 303: 511
[11] Ramezanzadeh B, Niroumandrad S, Ahmadi A, et al. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide [J]. Corros. Sci., 2016, 103: 283
[12] Ramezanzadeh B, Ahmadi A, Mandavian M. Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets [J]. Corros. Sci., 2016, 109: 182
[13] Nguyen T D, Tran B A, Vu K O, et al. Corrosion protection of carbon steel using hydrotalcite/graphene oxide nanohybrid [J]. J. Coat. Technol. Res., 2018, 16 (2): 585
[14] Yan M C, Vetter C A, Gelling V J. Corrosion inhibition performance of polypyrrole Al flake composite coatings for Al alloys [J]. Corros. Sci., 2013, 70: 37
[15] Liu X W, Xiong J P, Lv Y W, et al. Study on corrosion electrochemical behavior of several different coating systems by EIS [J]. Prog. Org. Coat., 2009, 64(4): 497
[16] Tsai P Y, Chen T E, Lee Y L. Development and Characterization of Anticorrosion and Antifriction Properties for High Performance Polyurethane/Graphene Composite Coatings [J]. Coatings, 2018, 8: 250
[17] Ramezanzadeh B, Niroumandrad S, Ahmadi A, et al. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide [J]. Corros. Sci., 2016, 103: 283
[18] Morsch S, Lyon S, Smith S D, et al. Mapping water uptake in an epoxy-phenolic coating [J]. Prog. Org. Coat., 2015, 86: 173
[19] Cai K, Zuo S, Luo S, et al. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings [J]. Rsc Advances2016, 6 (98): 95965
doi: 10.1039/C6RA19618G
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[10] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[11] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[12] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[13] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[14] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
[15] WANG Yuanchen,SONG Zhuman,LI Rui,SHI Wenbo,ZHU Yankun,ZHANG Guangping. Fatigue Properties and Crack Growth Behavior of ML40Cr Steel for 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(10): 771-775.
No Suggested Reading articles found!