Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (4): 277-284    DOI: 10.11901/1005.3093.2019.391
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Condensation Behavior of Wear Resistant Al-based Superhydrophobic Materials
WANG Fang1, ZHOU Baoyu1, FENG Wei1,2(), LEI Jialiu1,2, JIANG Yufeng1, WANG Qidi1,3
1.School of Materials Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
2.School of Materials Science and Engineering, Key Laboratory of Environmental Pollution Control and Restoration in Hubei Province, Huangshi 435003, China
3.Kunming University of Science and Technology, Faculty of Metallurgy and Energy, Kunming 650000, China
Cite this article: 

WANG Fang, ZHOU Baoyu, FENG Wei, LEI Jialiu, JIANG Yufeng, WANG Qidi. Preparation and Condensation Behavior of Wear Resistant Al-based Superhydrophobic Materials. Chinese Journal of Materials Research, 2020, 34(4): 277-284.

Download:  HTML  PDF(20348KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al-based superhydrophobic material with excellent wear resistance were prepared by hydrothermal method. SEM results reveal that there exists a distinct micro-nano hierarchical structure on the surface of the prepared material. After 2,000 cycles of friction test the surface of the prepared material became slightly smooth, but where a large number of ZnO nanorods still remained, which maintains superhydrophobic properties yet. Also, the Al-based superhydrophobic material has good resistance to acid- and alkali-corrosion. Condensation experiments shown that condensate droplets will be randomly generated on the micro-nano hierarchical structure. It is worth noting that the condensate droplets in the groove will gradually get out of the bottom of the groove during the growth and coalescence processes, and finally suspended on the surface. It confirmed that the condensate droplets remain in the Cassie state, which provides a guarantee for the frequent occurrence of self-propelled of condensate droplets.

Key words:  surface and interface      superhydrophobic materials      hydrothermal method      wear resistant      condensation      self-propelled of condensate droplets     
Received:  15 August 2019     
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China(No. 21603070);National Natural Science Foundation of China(No. 51704105);Hubei Provincial Central Government Guided Local Science and Technology Development Project(No. 2019ZYYD006)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.391     OR     https://www.cjmr.org/EN/Y2020/V34/I4/277

SampleABC
Number/n033
Time/h313
(Contact angle) Average/(°)163.6164.2164.4
(Sliding angle) Average/(°)2.51.81.8
Table 1  Effect of hydrothermal reaction main parameters on Contact angle and Sliding angle
Fig.1  Contact angle (a) and sliding angle (b) of sample B
Fig.2  Contact angle of the samples varies with number of rubbing test
Fig.3  Comparison of surface morphology of samples before and after 2000 rubbing test: sample A (no seed layer, hydrothermal reaction 3 h) before (A) and after rubbing (A'); sample B (3 layers of seed layer, hydrothermal reaction 1 h) before (B) and after rubbing (B'); sample C (3 layers of seed layer, hydrothermal reaction 3 h) before (C) and after rubbing (C')
Fig.4  Contact angle of the sample changes with the number of immersion days (a) acid resistance test and (b) alkali resistance test
Fig.5  Condensed droplets “emerge” from the groove during condensation process on sample B before rubbing test
Fig.6  Self-propelled of condensate droplets of sample B before rubbing test
Fig.7  Condensation cycle process of sample B before rubbing test: (a~e) the first cycle of the condensation cycle; (e~f) the second cycle of the condensation cycle
Fig.8  Condensation cycle process of sample B after 2000 rubbing test: (a~e) the first cycle of the condensation cycle; (e~f) the second cycle of the condensation cycle
[1] Zhang Q L, He M, Chen J, et al. Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets [J]. Chem. commun., 2013,49(40): 4516
doi: 10.1039/c3cc40592c pmid: 23575638
[2] Wang J, Shi X T, Feng L B, et al. Construction of long-lasting superhydrophobic copper surface and wear resistance and self-cleaning properties [J]. Mater. Rev., 2018, 32(24): 4314
(王晶, 史雪婷, 冯利邦等. 长效超疏水铜表面的构建及耐磨性和自清洁性能 [J]. 材料导报, 2018, 32(24): 4314)
[3] Yao J P, Lei S, Wang F J, et al. Preparation and corrosion resistance of superhydrophobic cuprous oxide surface [J]. Chin. J. Mater. Res., 2013, 27(06): 647
(尧军平, 雷胜, 王法军等. 超疏水氧化亚铜表面的制备和耐腐蚀性能 [J]. 材料研究学报, 2013, 27(06): 647)
[4] Wang J, Kong Q G, Zhang L, et al. Preparation and properties of super-double-surface coating modified by fluorinated low surface energy [J]. Surface Technology, 2018, 47(11): 66
(王静, 孔庆刚, 张龙等. 含氟低表面能修饰的超双疏涂层制备及其性能 [J]. 表面技术, 2018, 47(11): 66)
[5] Zhan X L, Jin B Y, Zhang Q H, et al. Design and applications of multifunctional super-wetting materials [J]. Progress in Chemistry, 2018, 30(1): 87
doi: 10.1039/c7sc01055a pmid: 28989639
[6] Sojoudi H, Wang M, Boscher N D, et al. Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces [J]. Soft Matter, 2016, 12(7): 1938
doi: 10.1039/c5sm02295a pmid: 26757856
[7] Weng T Y, Lai D L, Li X C, et al. Preparation and property of superhydrophobic phosphate-cerium composite coatings on hot-dip galvanizing carbon steel [J]. Chin. J. of Mater. Res., 2018, 32(11): 801
(翁天宇, 赖德林, 李晓聪等. 热浸镀锌层磷酸盐-铈盐复合处理制备超疏水膜层研究 [J]. 材料研究学报, 2018, 32(11): 801)
doi: 10.11901/1005.3093.2018.173
[8] Chen N N, Wang Y H, Zhong L, et al. Anticorrosion performance of super-hydrophobic complex film of graphene/stearic acid on AZ91 Mg-alloy [J]. Chin. J. of Mater. Res., 2017, 31(10): 751
(陈宁宁, 王燕华, 钟莲等. 石墨烯/硬脂酸超疏水复合膜层的防腐性能 [J]. 材料研究学报, 2017, 31(10): 751)
[9] Cheng Y T, Rodak D E. Is the lotus leaf superhydrophobic [J]. Appl. Phys. Lett., 2005, 86(14): 144101
doi: 10.1063/1.1895487
[10] Cheng Y T, Rodak D E, Angelopoulos A, et al. Microscopic observations of condensation of water on lotus leaves [J]. Appl. Phys. Lett., 2005, 87(19): 194112
[11] Chen C H, Cai Q G, Tsai C L,et al. Dropwise condensation on superhydrophobic surfaces with two-tier roughness [J]. Appl. Phys. Lett., 2007, 90(17): 173108
doi: 10.1021/acsnano.5b05607 pmid: 26565420
[12] Boreyko J B, Chen C H. Self-propelled dropwise condensate on superhydrophobic surfaces [J]. Phys. Rev. Lett., 2009, 103(18): 184501
doi: 10.1103/PhysRevLett.103.184501 pmid: 19905808
[13] Zhang W, Lin G H, Li J, et al. Fabrication of biomimetic polymer nanocone films with condensate microdrop self-removal func-tion [J]. Adv. Mater. Interfaces., 2015, 2(12): 1500238
[14] Mulroe M D, Srijanto B R, Farzad Ahmadi S, et al. Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation [J]. Acs Nano., 2017, 11(8): 8499
doi: 10.1021/acsnano.7b04481 pmid: 28719740
[15] Feng J, Pang Y C, Qin Z Q, et al. Why condensate drops can spontaneously move away on some superhydrophobic surfaces but not on others [J]. Acs Appl. Mater. & Inter., 2012, 4(12): 6618
doi: 10.1021/am301767k pmid: 23153202
[16] Feng J, Qin Z Q, Yao S H. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces [J]. Langmuir, 2012, 28(14): 6067
doi: 10.1021/la300609f pmid: 22424422
[17] Shin B S, Lee K R, Moon M W, et al. Extreme water repellency of nanostructured low-surface-energy non-woven fabrics [J]. Soft Matter, 2012, 8(6): 1817
[18] Ko, T J, Her E K, Shin B G, et al. Water condensation behavior on the surface of a network of superhydrophobic carbon fibers with high-aspect-ratio nanostructures [J]. Carbon, 2012, 50(14): 5085
[19] Zhang D G, Li L H, Wu Y L,et al. One-step method for fabrication of bioinspired hierarchical superhydrophobic surface with robust stability [J]. Appl. Surf. Sci., 2019, 473: 493
doi: 10.1166/jnn.2020.16912 pmid: 31383101
[20] Li W M,Peng C Y,Wu B R,Carbon fiber particle reinforced CeO2/PMMA/PVDF superhydrophobic composite coating and its wear resistance [J]. Mater. Rev.,2017, 31(S1): 334
(李为民, 彭超义, 吴彬瑞. 碳纤维颗粒增强CeO2/PMMA/PVDF超疏水复合涂层及其耐磨性能 [J]. 材料导报, 2017, 31(S1): 334)
[21] Fan X L, Wang W L, Su J, et al. Mechanically robust superhydrophobic mesh for oil/water separation by a seed free hydrothermal method [J]. Mater. Res. Express., 2019, 6(1): 015026
doi: 10.1088/1748-6041/10/1/015026 pmid: 25729882
[22] Hu L Y, Feng W, Li W, et al. Preparation of superhydrophobic anti-icing zinc oxide surface by hydrothermal method [J]. Journal of hubei polytechiv university, 2016, 32(05): 46
(胡良云, 冯伟, 李文等. 水热法制备超疏水防冰氧化锌表面 [J]. 湖北理工学院学报, 2016, 32(05): 46)
[23] Xu S Y, Zhao Y Y, Song Q S, et al. Study on hydrothermal synthesis and hydrophobic properties of stainless steel based ZnO thin films [J] J. synthetic. cryst., 2018, 47(08): 1560
(徐姝颖, 赵莹莹, 宋秋实等. 不锈钢基ZnO薄膜的水热合成及其疏水性能研究 [J]. 人工晶体学报, 2018, 47(08): 1560)
[24] Yang T T, Liu C S, Zhang D J, et al. Preparation and durability of zinc oxide superhydrophobic films [J]. Mater. Prot., 2017, 50(04): 30
(杨亭亭, 刘长松, 张德建等. 氧化锌超疏水薄膜的制备及其耐久性 [J]. 材料保护, 2017, 50(04): 30)
[25] Guo Y G, Zhang X, Geng T, et al. Research progress in durability of superhydrophobic surfaces [J]. China Surface Engineering, 2018, 31(05): 63
(郭永刚, 张鑫, 耿铁等. 超疏水表面耐久性能的研究进展 [J]. 中国表面工程, 2018, 31(05): 63)
[26] Dai W Z. Preparation technology and strengthening mechanism of wear-resistant superhydrophobic coating [D]. Southeast University, 2018
(戴文哲. 耐磨超疏水涂层制备技术及强化机制研究 [D]. 南京: 东南大学, 2018)
[27] Sharma C S, Combe J, Giger M, et al. Growth rates and spontaneous navigation of condensate droplets through randomly structured textures [J]. Acs Nano., 2017, 11(2): 1673
doi: 10.1021/acsnano.6b07471 pmid: 28170223
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] CHENG Hongjie, LIU Huangjuan, JIANG Ting, WANG Fajun, LI Wen. Preparation and Properties of Near-infrared Reflective Superhydrophobic Yellow Coating[J]. 材料研究学报, 2022, 36(9): 687-698.
[7] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
[8] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] LU Yiliang, DU Yao, WANG Cheng, XIN Li, ZHU Shenglong, WANG Fuhui. Effect of Nano-Al2O3 and -TiO2 Modified Silicone Coatings on High Temperature Oxidation Resistance of 304 Stainless Steel[J]. 材料研究学报, 2021, 35(6): 458-466.
[15] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
No Suggested Reading articles found!