|
|
Preparation and Condensation Behavior of Wear Resistant Al-based Superhydrophobic Materials |
WANG Fang1, ZHOU Baoyu1, FENG Wei1,2( ), LEI Jialiu1,2, JIANG Yufeng1, WANG Qidi1,3 |
1.School of Materials Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China 2.School of Materials Science and Engineering, Key Laboratory of Environmental Pollution Control and Restoration in Hubei Province, Huangshi 435003, China 3.Kunming University of Science and Technology, Faculty of Metallurgy and Energy, Kunming 650000, China |
|
Cite this article:
WANG Fang, ZHOU Baoyu, FENG Wei, LEI Jialiu, JIANG Yufeng, WANG Qidi. Preparation and Condensation Behavior of Wear Resistant Al-based Superhydrophobic Materials. Chinese Journal of Materials Research, 2020, 34(4): 277-284.
|
Abstract Al-based superhydrophobic material with excellent wear resistance were prepared by hydrothermal method. SEM results reveal that there exists a distinct micro-nano hierarchical structure on the surface of the prepared material. After 2,000 cycles of friction test the surface of the prepared material became slightly smooth, but where a large number of ZnO nanorods still remained, which maintains superhydrophobic properties yet. Also, the Al-based superhydrophobic material has good resistance to acid- and alkali-corrosion. Condensation experiments shown that condensate droplets will be randomly generated on the micro-nano hierarchical structure. It is worth noting that the condensate droplets in the groove will gradually get out of the bottom of the groove during the growth and coalescence processes, and finally suspended on the surface. It confirmed that the condensate droplets remain in the Cassie state, which provides a guarantee for the frequent occurrence of self-propelled of condensate droplets.
|
Received: 15 August 2019
|
|
Fund: National Natural Science Foundation of China(No. 21603070);National Natural Science Foundation of China(No. 51704105);Hubei Provincial Central Government Guided Local Science and Technology Development Project(No. 2019ZYYD006) |
[1] |
Zhang Q L, He M, Chen J, et al. Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets [J]. Chem. commun., 2013,49(40): 4516
doi: 10.1039/c3cc40592c
pmid: 23575638
|
[2] |
Wang J, Shi X T, Feng L B, et al. Construction of long-lasting superhydrophobic copper surface and wear resistance and self-cleaning properties [J]. Mater. Rev., 2018, 32(24): 4314
|
|
(王晶, 史雪婷, 冯利邦等. 长效超疏水铜表面的构建及耐磨性和自清洁性能 [J]. 材料导报, 2018, 32(24): 4314)
|
[3] |
Yao J P, Lei S, Wang F J, et al. Preparation and corrosion resistance of superhydrophobic cuprous oxide surface [J]. Chin. J. Mater. Res., 2013, 27(06): 647
|
|
(尧军平, 雷胜, 王法军等. 超疏水氧化亚铜表面的制备和耐腐蚀性能 [J]. 材料研究学报, 2013, 27(06): 647)
|
[4] |
Wang J, Kong Q G, Zhang L, et al. Preparation and properties of super-double-surface coating modified by fluorinated low surface energy [J]. Surface Technology, 2018, 47(11): 66
|
|
(王静, 孔庆刚, 张龙等. 含氟低表面能修饰的超双疏涂层制备及其性能 [J]. 表面技术, 2018, 47(11): 66)
|
[5] |
Zhan X L, Jin B Y, Zhang Q H, et al. Design and applications of multifunctional super-wetting materials [J]. Progress in Chemistry, 2018, 30(1): 87
doi: 10.1039/c7sc01055a
pmid: 28989639
|
[6] |
Sojoudi H, Wang M, Boscher N D, et al. Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces [J]. Soft Matter, 2016, 12(7): 1938
doi: 10.1039/c5sm02295a
pmid: 26757856
|
[7] |
Weng T Y, Lai D L, Li X C, et al. Preparation and property of superhydrophobic phosphate-cerium composite coatings on hot-dip galvanizing carbon steel [J]. Chin. J. of Mater. Res., 2018, 32(11): 801
|
|
(翁天宇, 赖德林, 李晓聪等. 热浸镀锌层磷酸盐-铈盐复合处理制备超疏水膜层研究 [J]. 材料研究学报, 2018, 32(11): 801)
doi: 10.11901/1005.3093.2018.173
|
[8] |
Chen N N, Wang Y H, Zhong L, et al. Anticorrosion performance of super-hydrophobic complex film of graphene/stearic acid on AZ91 Mg-alloy [J]. Chin. J. of Mater. Res., 2017, 31(10): 751
|
|
(陈宁宁, 王燕华, 钟莲等. 石墨烯/硬脂酸超疏水复合膜层的防腐性能 [J]. 材料研究学报, 2017, 31(10): 751)
|
[9] |
Cheng Y T, Rodak D E. Is the lotus leaf superhydrophobic [J]. Appl. Phys. Lett., 2005, 86(14): 144101
doi: 10.1063/1.1895487
|
[10] |
Cheng Y T, Rodak D E, Angelopoulos A, et al. Microscopic observations of condensation of water on lotus leaves [J]. Appl. Phys. Lett., 2005, 87(19): 194112
|
[11] |
Chen C H, Cai Q G, Tsai C L,et al. Dropwise condensation on superhydrophobic surfaces with two-tier roughness [J]. Appl. Phys. Lett., 2007, 90(17): 173108
doi: 10.1021/acsnano.5b05607
pmid: 26565420
|
[12] |
Boreyko J B, Chen C H. Self-propelled dropwise condensate on superhydrophobic surfaces [J]. Phys. Rev. Lett., 2009, 103(18): 184501
doi: 10.1103/PhysRevLett.103.184501
pmid: 19905808
|
[13] |
Zhang W, Lin G H, Li J, et al. Fabrication of biomimetic polymer nanocone films with condensate microdrop self-removal func-tion [J]. Adv. Mater. Interfaces., 2015, 2(12): 1500238
|
[14] |
Mulroe M D, Srijanto B R, Farzad Ahmadi S, et al. Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation [J]. Acs Nano., 2017, 11(8): 8499
doi: 10.1021/acsnano.7b04481
pmid: 28719740
|
[15] |
Feng J, Pang Y C, Qin Z Q, et al. Why condensate drops can spontaneously move away on some superhydrophobic surfaces but not on others [J]. Acs Appl. Mater. & Inter., 2012, 4(12): 6618
doi: 10.1021/am301767k
pmid: 23153202
|
[16] |
Feng J, Qin Z Q, Yao S H. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces [J]. Langmuir, 2012, 28(14): 6067
doi: 10.1021/la300609f
pmid: 22424422
|
[17] |
Shin B S, Lee K R, Moon M W, et al. Extreme water repellency of nanostructured low-surface-energy non-woven fabrics [J]. Soft Matter, 2012, 8(6): 1817
|
[18] |
Ko, T J, Her E K, Shin B G, et al. Water condensation behavior on the surface of a network of superhydrophobic carbon fibers with high-aspect-ratio nanostructures [J]. Carbon, 2012, 50(14): 5085
|
[19] |
Zhang D G, Li L H, Wu Y L,et al. One-step method for fabrication of bioinspired hierarchical superhydrophobic surface with robust stability [J]. Appl. Surf. Sci., 2019, 473: 493
doi: 10.1166/jnn.2020.16912
pmid: 31383101
|
[20] |
Li W M,Peng C Y,Wu B R,Carbon fiber particle reinforced CeO2/PMMA/PVDF superhydrophobic composite coating and its wear resistance [J]. Mater. Rev.,2017, 31(S1): 334
|
|
(李为民, 彭超义, 吴彬瑞. 碳纤维颗粒增强CeO2/PMMA/PVDF超疏水复合涂层及其耐磨性能 [J]. 材料导报, 2017, 31(S1): 334)
|
[21] |
Fan X L, Wang W L, Su J, et al. Mechanically robust superhydrophobic mesh for oil/water separation by a seed free hydrothermal method [J]. Mater. Res. Express., 2019, 6(1): 015026
doi: 10.1088/1748-6041/10/1/015026
pmid: 25729882
|
[22] |
Hu L Y, Feng W, Li W, et al. Preparation of superhydrophobic anti-icing zinc oxide surface by hydrothermal method [J]. Journal of hubei polytechiv university, 2016, 32(05): 46
|
|
(胡良云, 冯伟, 李文等. 水热法制备超疏水防冰氧化锌表面 [J]. 湖北理工学院学报, 2016, 32(05): 46)
|
[23] |
Xu S Y, Zhao Y Y, Song Q S, et al. Study on hydrothermal synthesis and hydrophobic properties of stainless steel based ZnO thin films [J] J. synthetic. cryst., 2018, 47(08): 1560
|
|
(徐姝颖, 赵莹莹, 宋秋实等. 不锈钢基ZnO薄膜的水热合成及其疏水性能研究 [J]. 人工晶体学报, 2018, 47(08): 1560)
|
[24] |
Yang T T, Liu C S, Zhang D J, et al. Preparation and durability of zinc oxide superhydrophobic films [J]. Mater. Prot., 2017, 50(04): 30
|
|
(杨亭亭, 刘长松, 张德建等. 氧化锌超疏水薄膜的制备及其耐久性 [J]. 材料保护, 2017, 50(04): 30)
|
[25] |
Guo Y G, Zhang X, Geng T, et al. Research progress in durability of superhydrophobic surfaces [J]. China Surface Engineering, 2018, 31(05): 63
|
|
(郭永刚, 张鑫, 耿铁等. 超疏水表面耐久性能的研究进展 [J]. 中国表面工程, 2018, 31(05): 63)
|
[26] |
Dai W Z. Preparation technology and strengthening mechanism of wear-resistant superhydrophobic coating [D]. Southeast University, 2018
|
|
(戴文哲. 耐磨超疏水涂层制备技术及强化机制研究 [D]. 南京: 东南大学, 2018)
|
[27] |
Sharma C S, Combe J, Giger M, et al. Growth rates and spontaneous navigation of condensate droplets through randomly structured textures [J]. Acs Nano., 2017, 11(2): 1673
doi: 10.1021/acsnano.6b07471
pmid: 28170223
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|