Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (4): 285-290    DOI: 10.11901/1005.3093.2019.367
ARTICLES Current Issue | Archive | Adv Search |
Influence of Bi2WO6 on Electric Properties of ZnO Varistor Ceramics
LIN Wenwen, HE Xiaochun, XU Zhijun, WANG Ziheng, CHU Ruiqing()
School of Environmental Materials and Engineering, Yantai University, Yantai 264005,China
Cite this article: 

LIN Wenwen, HE Xiaochun, XU Zhijun, WANG Ziheng, CHU Ruiqing. Influence of Bi2WO6 on Electric Properties of ZnO Varistor Ceramics. Chinese Journal of Materials Research, 2020, 34(4): 285-290.

Download:  HTML  PDF(4205KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The ZnO-based varistor ceramics with addition of different amount of Bi2WO6 were prepared by conventional solid state reaction and then their surface morphology and electrical properties were examined. Results show that appropriate Bi2WO6-dopping can promote the uniform growth of ZnO varistor ceramic grains, improve their uniformity of microstructure, reduce the breakdown voltage and increase the nonlinear coefficient. In addition, Bi2WO6 can increase the content of absorbed oxygen on the surface of ZnO, thereby enhance the density of the interfacial state and barrier height, correspondingly, optimize the nonlinear characteristic of ZnO varistor ceramics. For the ZnO-based varistor ceramics with x=7% (mass fraction) Bi2WO6, presents excellent properties: the nonlinear coefficient α is as high as 53, corresponding to the highly barrier height φb of 11.52 eV, whilst the leakage current JL and the breakdown voltage are as low as 3.50 μA/cm2 and 263 V/mm, respectively.

Key words:  inorganic non-metallic materials      ZnO varistor ceramics      Bi2WO6      microstructure      electrical properties     
Received:  23 July 2019     
ZTFLH:  TB321  
Fund: National Key R & D Program of China(No. 2016YFB0402701);Focus on Research and Development Plan in Shandong Province(No. GG201809190252);Natural Science Foundation of Shandong Province(No. ZR2016EMM02)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.367     OR     https://www.cjmr.org/EN/Y2020/V34/I4/285

Fig.1  XRD patterns of samples with different Bi2WO6 contents
Fig.2  SEM jmages of the samples with different Bi2WO6 contents (a) x=0%, (b) x=1%, (c) x=3%, (d) x=5%, (e) x=7%, (f) x=9%
Bi2WO6/%d/μmE1 mA/V·mm-1Vgb/VαJL/μA·cm-2
05.862911.71441.01
14.003971.593720.64
35.393651.971541.26
55.683121.774510.93
78.462632.22533.50
95.832981.742811.37
Table 1  Macro-electrical performance parameters of ZnO varistor ceramics
Fig.3  current-voltage (E-J) curve of ZnO varistor ceramics
Fig.4  (1/C-1/2C0)2-Vgb relation curve of ZnO varistor ceramics
Bi2WO6/%Nd/1025·m-3Ns/1017·m-2φb/eVt/10-8m
01.2042.374.971.97
10.831.643.451.98
30.821.512.941.84
50.802.246.672.8
70.592.5211.524.3
90.581.323.182.27
Table 2  Microelectrical parameters of ZnO varistor ceramics
Fig.5  Dielectric properties of varistor ceramics (a) change of dielectric constant with frequency, (b) change of dissipation factor with frequency, (c) the relationship between of εr and d/t
[1] Gupta T K. Application of Zinc-Oxide varistors [J]. J. Am. Ceram. Soc., 1990, 73(7): 1817
doi: 10.1002/adma.201403707 pmid: 25655302
[2] Clarke D R. Varistor ceramics [J]. J. Am. Ceram. Soc., 1990, 82(3): 485
[3] Xu G Y, Xie G Z, Tao J, et al. Mn ion valence change and ZnO varistor ceramics V-I nonlinear character [J]. Chin. J. Mater. Res., 2000, 14(2): 198
(徐国跃, 谢国治, 陶杰等. Mn离子的价态变化与ZnO压敏陶瓷的V-I非线性 [J]. 材料研究学报, 2000, 14(2): 1998)
[4] Cheng P F, Li S T. Soft core phenomenon of ZnO varistors doped with rare-earth oxides [J]. Chin. J. Mater. Res., 2006, 20(4): 395
(成鹏飞,李盛涛. 掺杂稀土氧化物的ZnO-Bi2O3系压敏陶瓷的“软心” [J]. 材料研究学报, 2006, 20(4): 395)
[5] Mahan G D, Levinson L M, Philipp H R. Theory of conduction in ZnO varistors [J]. J. Appl. Phys., 1979, 50(4): 2799
[6] Winston R A, Cordaro J F. Grain boundary interface electron traps in commercial zinc oxide varistors [J]. J. Appl. Phys., 1990, 68(12): 6495
[7] Xu G Y, Ma L X, Xie G Z. V-I nonlinear and negative temperature coefficient of ZnO/Co2O3 base unit material of sensitive resistance [J]. J. Funct. Mater., 2000, 31(5): 516
(徐国跃, 马立新, 谢国治. ZnO/Co2O3敏感电阻单元材料V-I非线性及NTC效应 [J]. 功能材料, 2000, 31(5): 516)
[8] Gopel W, Lampe U. Influence of defects on the electronic structure of zinc oxide surfaces [J]. Phys. Rev. B, 1980, 22(12): 6447
doi: 10.1002/adma.201503404 pmid: 26936217
[9] Bai H R, Sun Y, Xu Z J, et al. Influence of Bi-Co-O synthetic multi-phase on electrical properties of the ZnO-Bi2O3-MnO2-SiO2 varistors [J]. Mater. Lett., 2017, 209: 115
[10] Xiao X K, Zheng L Y, Cheng L H, et al. Influence of WO3-Doping on the microstructure and electrical properties of ZnO-Bi2O3 varistor ceramics sintered at 950℃ [J]. J. Am. Ceram. Soc., 2014, 98(4): 1
[11] Zhou W. Defect fluorite superstructures in the Bi2O3-WO3 system [J]. J. Solid State Chem., 1994, 108(2): 381
[12] Kim N, Vannier R N, Grey C P. Detecting different oxygen-ion jump pathways in Bi2WO6 with 1and 2- dimensional 17O MAS NMR spectroscopy [J]. Chem. Mater., 1952, 17(8): 2005
[13] Taoufyq A, Ahsaine H A, Patout L, et al. Electron microscopy analyses and electrical properties of the layered Bi2WO6 phase [J]. J. Solid State Chem., 2013, 203: 8
[14] Leng S, Li G, Zheng L, et al. Influences of Ba/Ti ratios on the positive temperature coefficient of resistivity effect of Y-doped BaTiO3-(Bi1/2Na1/2)TiO3 ceramics [J]. J. Am. Ceram. Soc., 2011, 94(5): 1340
[15] Wurst J C, Nelson J A. Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics [J]. J. Am. Ceram. Soc., 1972, 55(2): 109
[16] Xu Z J, Bai H R, Ma S, et al. Effect of a Bi-Cr-O synthetic multi-phase on the microstructure and electrical properties of ZnO-Bi2O3 varistor ceramics [J]. Ceramics Int., 2016, 3(21): 1
[17] Wan S, Lv W Z, Liu W. Phase transformation and electrical properties of Bi2O3-based ZnO varistor doped with WO3 [J]. Jap. J. Appl. Phys., 2010, 49: 1
[18] Bai H R,The study on low temperature preparation and properties and Zn-Bi based varistor ceramics [D]. Liaocheng: LiaoCheng University, 2017
(白海瑞. Zn-Bi系压敏陶瓷的低温制备及性能研究 [D]. 聊城: 聊城大学, 2017)
[19] Li X, Lu Z Y, Chen Y C, et al. High voltage ZnO varistor ceramics doped with Sb2O3, SiO2 and MgO [J]. Rare Met. Mater. Eng., 2015, 44(1): 129
(李潇, 卢振亚, 陈奕创等. Sb2O3, SiO2和MgO 复合掺杂的高梯度氧化锌压敏陶瓷材料 [J]. 稀有金属材料与工程, 2015, 44(1): 129)
[20] Nahm C W, Shin B C, Min B H. Microstructure and electrical properties of Y2O3-doped ZnO-Pr6O11-based varistor ceramics [J]. J. Mater. Chem., 2003, 82(1): 157
[21] Ju J H, Wang H, Xu J W. Microstructures and electrical properties of V2O5-doped ZnO-Bi2O3-Co2O3-MnCO3-TiO2 low voltage varistor ceramics [J]. J. Chin. Ceram. Soc., 2011, 39(11): 1813
(巨锦华, 王华, 许积文. V2O5掺杂ZnO-Bi2O3-Co2O3-MnCO3-TiO2低压压敏陶瓷的微结构和电性能 [J]. 硅酸盐学报, 2011, 39(11): 1813)
[22] Ezhilvalavan S, Kutty T R N. Effect of antimony oxide stoichiometry on the nonlinearity of Zinc Oxide varistor ceramics [J]. Mater. Chem. Phys., 1997, 49(3): 258
[23] Shuk P, Wiemhofer H D, Guth U, Greenblatt M. Oxide ion conducting solid electrolytes based on Bi2O3 [J]. Solid State Ionics, 1996, 89(3-4): 179
[24] Fan J, Freer R. The roles played by Ag and Al dopants in controlling the electrical properties of ZnO varistors [J]. J. Appl. Phys., 1995, 77(9): 4795
[25] Bai H R, Li M M, Xu Z J, et al. Influence of SiO2 on electrical properties of the highly nonlinear ZnO-Bi2O3-MnO2 varistors [J]. J. Am. Ceram. Soc., 2017, 100(3): 3965
[26] Cai J N, Lin Y H, Li M, et al. Sintering temperature dependence of grain boundary resistivity in a rare-earth-Doped ZnO varistor [J]. J. Am. Ceram. Soc., 2017, 90(1): 291
doi: 10.1111/jace.2007.90.issue-1
[27] Nahm C W. Effect of sintering temperature on varistor properties and aging characteristics of ZnO-V2O5-MnO2 ceramics [J]. Ceram. Int., 2009, 35(7): 2679
doi: 10.1016/j.ceramint.2009.03.011
[28] Bai H R, Zhang M H, Xu Z J, et al. The effect of SiO2 on electric properties on low-temperature-sintered ZnO-Bi2O3-TiO3-Co2O3-MnO2-based ceramics [J]. J. Ceram. Soc., 2016, 100(3): 1
doi: 10.1111/jace.14496
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[10] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[11] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[14] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[15] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
No Suggested Reading articles found!