Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (6): 458-466    DOI: 10.11901/1005.3093.2020.258
ARTICLES Current Issue | Archive | Adv Search |
Effect of Nano-Al2O3 and -TiO2 Modified Silicone Coatings on High Temperature Oxidation Resistance of 304 Stainless Steel
LU Yiliang1,2, DU Yao1,2, WANG Cheng2(), XIN Li1, ZHU Shenglong1,3,4, WANG Fuhui3,4
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
4.Shenyang National Laboratory for Materials Science, Shenyang 110016, China
Cite this article: 

LU Yiliang, DU Yao, WANG Cheng, XIN Li, ZHU Shenglong, WANG Fuhui. Effect of Nano-Al2O3 and -TiO2 Modified Silicone Coatings on High Temperature Oxidation Resistance of 304 Stainless Steel. Chinese Journal of Materials Research, 2021, 35(6): 458-466.

Download:  HTML  PDF(10148KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Two modified silicone paints were prepared by physical mixing method with nano-Al2O3 and -TiO2 as the main filler. The corresponding paints are sprayed on the surface of tinplate and 304 stainless steel and dried at room temperature to obtain two type of coated samples. The conventional mechanical properties of the two coatings were tested, and the effect of the coating on the oxidation resistance of 304 stainless steel in the air at 600℃ was studied. The results show that both coatings have good adhesion, flexibility and impact resistance. Both coatings can effectively slow down the oxidation of 304 stainless steel at 600℃. When the ratio of nano-Al2O3 to TiO2 is 4:1, the nano-modified organic silicon coating has a better protective effect on 304 stainless steel.

Key words:  material surface and interface      silicone coating      nano filler      304 stainless steel      high temperature oxidation     
Received:  28 June 2020     
ZTFLH:  TG174.4  
Fund: Supported by National Key R&D Program of China(2018YFB2003601)
About author:  WANG Cheng, Tel: (024)23904856, E-mail: wangcheng@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.258     OR     https://www.cjmr.org/EN/Y2021/V35/I6/458

Paint nameα-Al2O3TiO2Glass powderZrO2AlTi
1#1040101055
2#4010101055
Table 1  Compositions of two nano-modified organic silicone coatings (mass fraction, %)
Fig.1  Macro morphologies of (a, c, e) the coating 1# and (b, d, f) the coating 2 # after the tests of (a, b) adhesion, (c, d) flexibility and (e, f) impact resistance
Fig.2  Oxidation kinetics of uncoated and coated 304 stainless steel samples at 600℃ in air
Fig.3  XRD patterns of 304 stainless steel substrate and two coatings after oxidation at 600℃ for 1000 h
Fig.4  Surface (a) and cross-sectional (b, c) morphologies of 304SS sample after oxidation for 1000 h at 600℃
Fig.5  Surface (a) and cross-sectional (b) morphologies of 304SS coated with the coating 1# after oxidation for 1000 h at 600℃
ElementsSiOTiAlZrCrMnFe
Content6.8768.249.699.282.801.390.740.99
Table 2  The contents of elements detected by EDS on the surface of the coating 1# after oxidation (atomic fraction, %)
Fig.6  Map scannings of main elements on the cross section of 304SS coated with the coating 1# after oxidation at 600℃ for 1000 h
Fig.7  Surface (a) and cross-sectional (b) morphologies of 304SS coated with the coating 2# after oxidation for 1000 h at 600℃
ElementsSiOTiAlZrCr
Content5.0172.463.5816.731.640.58
Table 3  The contents of main elements on the surface of the coating 2# after oxidation (atomic fraction, %)
Fig.8  Map scannings of main elements on the cross section of 304SS sample coated with the coating 2# after oxidation at 600℃ for 1000 h
1 Wang R G, Li E M. Research on W-800℃ silicone high-temperature resistant coating formulation [J]. J. Coat. Appl., 2011, 41(1): 5
王荣国, 李二明. W-800℃有机硅耐高温涂料配方研究 [J]. 涂料与应用, 2011, 41(1): 5
2 Zhang A X, Zhou Q, Chen L. Progress of silicone industry in China in 2014 [J]. Silicone Mater., 2015, 29: 226
张爱霞, 周勤, 陈莉. 2014年国内有机硅进展 [J]. 有机硅材料, 2015, 29: 226
3 Mathivanan L, Radhakrishna S. Heat-resistant anti-corrosive paint from epoxy-silicone vehicles [J]. Anti-Corros. Methods Mater., 1997, 44: 400
4 Zhang W J, Chen J H. High-temperature resistant silicone coating and adhesive [J]. Silicone Mater., 2002, 16(3): 28
张文娟, 陈剑华. 耐高温有机硅涂料及粘接剂 [J]. 有机硅材料, 2002, 16(3): 28
5 Liu H Y, Zhang S. Preparation and properties of black organic silicone coating with high-temperature resistance [J]. Corros. Prot., 2010, 31: 222
刘宏宇, 张松. 黑色有机硅耐高温涂料的制备及其性能 [J]. 腐蚀与防护, 2010, 31: 222
6 Yu L Y, Li X Y, Luo H. Effect of pigments and fillers on high temperature resistance and anticorrosion of silicone bonding coat modified by epoxy resin [J]. China Adhes., 2010, 19(4): 5
喻兰英, 李新跃, 罗宏. 颜填料对EP改性有机硅粘接涂层耐高温性能和防腐性能的影响 [J]. 中国胶粘剂, 2010, 19(4): 5
7 Sun J T, Huang Y D, Cao H L, et al. Synthesis of heat-resistant silicone resin and studies on its thermal and curing properties [J]. J. Aeronaut. Mater., 2005, 25(1): 25
孙举涛, 黄玉东, 曹海琳等. 耐高温有机硅树脂的合成及其耐热和固化性能研究 [J]. 航空材料学报, 2005, 25(1): 25
8 Luo F, Yan X H, Huang L J, et al. Influence of talcum powder on the performance of epoxy modified organosilicane heat-resistant coatings [J]. Fine Chem., 2009, 26: 3
罗发, 闫晓红, 黄立军等. 滑石粉对环氧改性有机硅耐高温涂层性能的影响 [J]. 精细化工, 2009, 26: 3
9 Lian W Z, Zhang G L, Ma C F, et al. Preparation and properties of anti-corrosive coating with high temperature resistance and thermal insulation [J]. Polym. Mater. Sci. Eng., 2017, 33(6): 152
廉卫珍, 张国梁, 马春风等. 耐高温防腐隔热涂料的制备与性能 [J]. 高分子材料科学与工程, 2017, 33(6): 152
10 Du Y, Wang C, Zhu S L, et al. High temperature oxidation and electrochemical corrosion behavior of Al nano-particle modified silicone coating on 304 stainless steel [J]. Chin. J. Mater. Res., 2019, 33: 942
杜瑶, 王成, 朱圣龙等. 304不锈钢表面纳米铝改性有机硅涂层的高温氧化和电化学行为 [J]. 材料研究学报, 2019, 33: 942
11 Wang C, Jiang F, Wang F. Corrosion inhibition of 304 stainless steel by nano-sized Ti/silicone coatings in an environment containing NaCl and water vapor at 400~600℃ [J]. Oxidat. Met., 2004, 62: 1
12 Mitra S K, Roy S K, Bose S K. Influence of superficial coating of CeO2 on the oxidation behavior of AISI 304 stainless steel [J]. Oxidat. Met., 1993, 39: 221
13 Jovanovic J D, Govedarica M N, Dvornic P R, et al. The thermogravimetric analysis of some polysiloxanes [J]. Polym. Degrad. Stabil., 1998, 61: 87
14 Min C Y, Huang Y D, Song H J, et al. Synthesis of high-temperature resistance hybrid silicon resin and evaluation of its composite material's high-temperature mechanical property [J]. J. Solid Rocket Technol., 2011, 34: 520
闵春英, 黄玉东, 宋浩杰等. 耐高温杂化有机硅树脂的合成及复合材料的高温力学性能 [J]. 固体火箭技术, 2011, 34: 520
15 Zhang H, Zhang T, Shao Y Q, et al. Comparative study on the different protective coatings at high-temperature for stainless steel 304 [J]. Heat Treat. Met., 2012, 37(2): 96
张浩, 张腾, 邵艳群等. 不同涂层对304不锈钢高温防护效果的对比研究 [J]. 金属热处理, 2012, 37(2): 96
16 Robino C V. Representation of mixed reactive gases on free energy (Ellingharn-Richardson) diagrams [J]. Metall. Mater. Trans., 1996, 27B: 65
17 Seybolt A U. Observations on the Fe-Cr-O system [J]. J. Electrochem. Soc., 1960, 107: 147
18 Du Y, Wang C, Yang L L, et al. Enhanced oxidation and corrosion inhibition of 1Cr11Ni2W2MoV stainless steel by nano-modified silicone-based composite coatings at 600°C [J]. Corros. Sci., 2020, 169: 108599
19 Wang H Q, Li Y, Gou G L, et al. Discussion on two-step film-forming mechanism of silicone heat resistant coatings [J]. Paint Coat. Ind., 2005, 35(10): 17
王海侨, 李营, 苟国立等. 有机硅耐高温涂料二次成膜机理的探讨 [J]. 涂料工业, 2005, 35(10): 17
20 Li T F. High Temperature Oxidation and Hot Corrosion of Metals [M]. Beijing: Chemistry Industry Press, 2003
李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003
21 Zhou L X. Research on the reverse conversion emulsification of epoxy resin and waterborne epoxy resin anticorrosive coating [D]. Guangzhou: South China University of Technology, 2004
周立新. 环氧树脂的相反转乳化与水性环氧树脂防腐涂料的研究 [D]. 广州: 华南理工大学, 2004
[1] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[2] CHEN Zheng, YANG Fang, WANG Cheng, DU Yao, LU Yiliang, ZHU Shenglong, WANG Fuhui. Effect of Inorganic Fillers on High Temperature Oxidation Resistance of Nano-Al/Al2O3 Modified Organic Silicone Coatings[J]. 材料研究学报, 2022, 36(4): 271-277.
[3] LI Gang, WEN Ying, YU Zhongmin, LIU Jian, XIONG Zilian. Effect of Al Content on Properties of CrFeNiAlxSi High Entropy Alloy[J]. 材料研究学报, 2021, 35(9): 712-720.
[4] Yao DU,Cheng WANG,Shenglong ZHU,Fuhui WANG. High Temperature Oxidation and Electrochemical Corrosion Behavior of Al Nano-particle Modified Silicone Coating on 304 Stainless Steel[J]. 材料研究学报, 2019, 33(12): 942-948.
[5] Jianxiu CHANG, Dong WANG, Jiasheng DONG, Di WANG, Hanchang WU, Gong ZHANG, Langhong LOU. Effect of Rhenium Addition on Isothermal Oxidation Behavior of a Nickel-base Single Crystal Superalloy[J]. 材料研究学报, 2017, 31(9): 695-702.
[6] Xin GUO,Peiqing LA,Heng LI,Xuefeng LU,Yupeng WEI. Properties of Warm-rolled High Al Containing 304 Austenite Stainless Steel[J]. 材料研究学报, 2017, 31(3): 175-181.
[7] WU Congqian, REN Ruiming, LIU Pengtao, CHEN Chunhuan, ZHAO Xiujuan. Cavitation Erosion of 304 Stainless Steel induced by Caviting Water Jet[J]. 材料研究学报, 2016, 30(6): 473-480.
[8] SHI Quanqiang, LIU Jian, YAN Wei, WANG Wei, SHAN Yiyin, YANG Ke. High Temperature Oxidation Behavior of SIMP Steel and T91 Steel at 800℃[J]. 材料研究学报, 2016, 30(2): 81-86.
[9] Lincai WU,Licong AN,Yitao YANG. High Temperature Oxidation of a Low Nickel Austenitic Heat Resistant Steel[J]. 材料研究学报, 2015, 29(12): 941-947.
[10] Xunzeng HUANG,Yitao YANG. High Temperature Oxidation Performance of a Nb and Ti Stabilized 430 Ferritic Stainless Steel[J]. 材料研究学报, 2014, 28(9): 641-648.
[11] Tao LIU,Jiasheng DONG,Hui LI,Zhijun LI,Xingtai ZHOU,Langhong LOU. Oxidation Behavior of GH3535 Superalloy at 700℃ and 900℃[J]. 材料研究学报, 2014, 28(12): 895-900.
[12] LU Xudong TIAN Sugui YU Xingfu WANG Changxin. Isothermal Oxidation Behaviour of Ni–Cr–Ta–Al–Co–Mo Alloy at 900oC and 1000oC[J]. 材料研究学报, 2011, 25(4): 427-432.
[13] WU Yaosha QIU Wanqi YU Hongya ZHONG Xichun LIU Zhongwu ZENG Dechang LI Shangzhou. High Temperature Cycle Oxidation Behavior of PS45/CuAl8 Pseudo-Alloy Composite Coating[J]. 材料研究学报, 2011, 25(2): 129-134.
[14] WANG Zhensheng ZHOU Lanzhang GUO Jianting LIANG Yongchun HU Zhuangqi. High Temperature Oxidation Behavior of Directional Solidification NiAl–28Cr–5.94Mo–0.05Hf–0.01Ho Eutectic Alloy[J]. 材料研究学报, 2010, 24(6): 585-591.
[15] LI Yuhai HUANG Xiaoying WANG Chengzhi LI Ying. High temperature oxidation kinetics of SiC particles[J]. 材料研究学报, 2009, 23(6): 582-586.
No Suggested Reading articles found!