Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (11): 868-874    DOI: 10.11901/1005.3093.2020.269
ARTICLES Current Issue | Archive | Adv Search |
Effect of Molybdenum Content on Microstructure and Corrosion Resistance of CoCrFeNiMo High Entropy Alloy
LIU Qian1(), WANG Xinyang1, HUANG Yanbin1, XIE Lu2, XU Quan3, LI Linhu1
1.Army Academy of Armored Forces, Equipment Support and Remanufacturing Department, Beijing 100072, China
2.University of Science & Technology Beijing, Institute of Mechanical Engineering, Beijing 100083, China
3.China Satellite Maritime Measurement and Control Department, Jiangyin 214431, China
Cite this article: 

LIU Qian, WANG Xinyang, HUANG Yanbin, XIE Lu, XU Quan, LI Linhu. Effect of Molybdenum Content on Microstructure and Corrosion Resistance of CoCrFeNiMo High Entropy Alloy. Chinese Journal of Materials Research, 2020, 34(11): 868-874.

Download:  HTML  PDF(5073KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High entropy alloys have been extensively paid attention in the coating industry due to their excellent mechanical properties and corrosion resistance. CoCrFeNiMox high-entropy alloy coatings were prepared on the surface of Q235 steel by laser cladding with synchronous powder feeding. The microstructure, microhardness and corrosion resistance of the coatings were studied. The corrosion mechanism of the alloys was analyzed and the strengthening mechanism of their corrosion resistance was revealed combined with the first-principle calculation. The results show that CoCrFeNiMo0.1 and CoCrFeNiMo0.2 are composed of the fcc phase. The fcc phase and tetragonal CrMo phase are both observed in the CoCrFeNiMo0.3 high-entropy alloy layer. The microstructure of the alloys is composed of dendrites. Cr and Mo elements are enriched in the interdendritic, and Co and Fe elements are enriched in the dendrites. CoCrFeNiMox high-entropy alloys have excellent comprehensive corrosion resistance in 3.5% (mass fraction) NaCl solution. As the content of Mo increases, the corrosion potential shifts to more positive potentials, the corrosion current density decreases, the length of polarization region increases, the impedance arc radius increases, and the electrode reaction resistance increases. It is found via the first-principle calculation that the higher corrosion resistance of the coating is related to its dense passivation film.

Key words:  metallic materials      corrosion resistance      first principle      high entropy alloy      laser cladding coating     
Received:  02 July 2020     
ZTFLH:  TG131  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.269     OR     https://www.cjmr.org/EN/Y2020/V34/I11/868

Fig.1  XRD patterns of CoCrFeNiMox high entropy alloy coatings
Fig.2  Microstructures of CoCrFeNiMoxlaser cladding coatings (a) Mo1, (b) Mo2, (c) Mo3
AlloyRegionCoCrFeNiMo
Mo1Interdendritic

22.50

(±0.14)

24.65

(±0.10)

23.30

(±0.24)

22.12

(±0.38)

7.43

(±0.13)

Dendrites

26.01

(±0.23)

22.77

(±0.12)

24.33

(±0.32)

26.25

(±0.24)

0.64

(±0.16)

Mo2Interdendritic

22.22

(±0.19)

23.78

(±0.27)

23.39

(±0.27)

22.58

(±0.13)

8.03

(±0.15)

Dendrites

25.86

(±0.28)

22.63

(±0.35)

24.14

(±0.46)

26.14

(±0.28)

1.23

(±0.18)

Mo3Interdendritic

22.13

(±0.22)

23.54

(±0.14)

23.30

(±0.36)

22.47

(±0.34)

8.56

(±0.24)

Dendrites

25.12

(±0.38)

21.90

(±0.35)

23.31

(±0.55)

25.22

(±0.29)

4.45

(±0.21)

Table 1  Element distributions in the different regions of CoCrFeNiMoxlaser cladding coatings (atomic fraction, %)
Fig.3  Polarization curves of CoCrFeNiMox high entropy alloy coatings in 3.5% NaCl solution.
AlloyIcorr /A·cm-2Ecorr /VE /V
Mo34.23×10-6-0.661.01
Mo25.01×10-6-0.680.86
Mo17.20×10-6-0.770.67
CoCrFeNiW[11]1.42×10-5-0.780.62
(CoCrFeNi)95Nb5[11]7.23×10-6-0.370.63
Table 2  Electrochemical parameters of three high-entropy alloy coatings
Fig.4  Impedance spectra of CoCrFeNiMox(x=0.1, 0.3) coatings in 3.5% NaCl solution (a) impedance spectrum of coatings; (b) impedance spectrum fitting of coatings; (c, d) Bode diagram of coatings
Fig.5  Equivalent circuit diagram of EIS of the high-entropy alloy coatings
AlloyRs/Ω·cm2Error/%Q/F·cm2Error/%Rct/Ω·cm2Error/%nError/%
Mo38.5693.671.33×10-52.4155497005.370.751.09
Mo17.8764.513.59×10-53.78449727.120.713.17
Table 3  Fitting parameters of EIS of two high-entropy alloy coatings
Position in passive filmAdsorption energy of Cl-Diffusion energy of Cl-
Interface of Cr2O3/MoO3Region a0.790.49
Region b0.370.26
Region c0.960.57
Interface of Cr2O3/Nb2O5Region a0.780.48
Region b0.230.18
Region c0.660.38
Table 4  Adsorption energy and diffusion energy of Cl- in the passive film formed on CoCrFeNiMo high-entropy alloy (eV)
1 Gaskell. Introduction to the Thermodynmics of Materials [M]. USA, Boca Raton: CRC Press, 2008
2 Cao L G, Zhu L, Zhang L L, et al. Microstructure evolution and mechanical properties of rapid solidified AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Chin. J. Mater. Res., 2019, 33: 650
曹雷刚, 朱琳, 张磊磊等. 快速凝固AlCoCrFeNi2.1共晶高熵合金的微观组织演变和力学性能 [J]. 材料研究学报, 2019, 33: 650
3 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
4 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
5 Liu N, Chen C, Chang I, et al. Compositional dependence of phase selection in coCrCu0.1FeMoNi-based high-entropy alloys [J]. Materials, 2018, 11: 1290
6 Gao N, Long Y, Peng H Y, et al. Microstructure and mechanical properties of TiVNbTa refractory high-entropy alloy prepared by powder metallurgy [J]. Chin. J. Mater. Res., 2019, 33: 572
高楠, 龙雁, 彭海燕等. 粉末冶金TiVNbTa难熔高熵合金的组织和力学性能 [J]. 材料研究学报, 2019, 33: 572
7 Liu W H, He J Y, Huang H L, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys [J]. Intermetallics, 2015, 60: 1
8 Wang Z H, Wang H, He D Y, et al. Microstructure characterization of CoCrCuFeNiMn high entropy alloys by plasma cladding [J]. Rare Met. Mater. Eng., 2015, 44: 644
王智慧, 王虎, 贺定勇等. 等离子熔覆CoCrCuFeNiMn高熵合金组织研究 [J]. 稀有金属材料与工程, 2015, 44: 644
9 Liu N, Zhu Z X, Jin Y X, et al. Research progress of laser cladding technology to prepare high-entropy alloy coatings [J]. Mater. Rev., 2014, 28(5): 133
刘宁, 朱智轩, 金云学等. 激光熔覆技术制备高熵合金涂层的研究进展 [J]. 材料导报, 2014, 28(5): 133
10 He F, Wang Z J, Wang J, et al. Abnormal γ″-ε phase transformation in the CoCrFeNiNb0.25 high entropy alloy [J]. Scripta Mater., 2018, 146: 281
11 Wang W R, Qi W, Xie L, et al. Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying [J]. Materials, 2019, 12: 694
12 Liu L, Qi J G, Wang B, et al. Microstructure and mechanical properties of CoCrFeNiVx high entropy alloys [J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 1130
刘亮, 齐锦刚, 王冰等. CoCrFeNiVx高熵合金的组织与力学性能 [J]. 特种铸造及有色合金, 2015, 35: 1130
13 Wang W R, Wang J Q, Yi H G, et al. Effect of molybdenum additives on corrosion behavior of (CoCrFeNi)100-xMox high-entropy alloys [J]. Entropy, 2018, 20: 908
14 Liu Q, Wang X Y, Huang Y B, et al. Research progress on high-entropy alloy design and computer simulation [J]. Mater. Rev., 2019, 33(): 392
刘谦, 王昕阳, 黄燕滨等. 高熵合金设计与计算机模拟方法的研究进展 [J]. 材料导报, 2019, 33(): 392
15 Shi D M, Wen B, Melnik R, et al. First-principles studies of Al-Ni intermetallic compounds [J]. J. Solid State Chem., 2009, 182: 2664
16 Wang L X. The first-principle studies on mechanical properties of AlFeCrCuX high entropy alloys [D]. Dalian: Dalian University of Technology, 2017
王兰馨. AlFeCrCuX高熵合金力学性能的第一性原理计算 [D]. 大连: 大连理工大学, 2017
17 Huang S, Li X Q, Huang H, et al. Mechanical performance of FeCrCoMnAlx high-entropy alloys from first-principle [J]. Mater. Chem. Phys., 2018, 210: 37
18 Nong Z S, Zhu J C, Yu H L, et al. First principles calculation of intermetallic compounds in FeTiCoNiVCrMnCuAl system high entropy alloy [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 1437
19 Shun T T, Chang L Y, Shiu M H. Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys [J]. Mater. Sci. Eng., 2012, 556A: 170
20 Wong S K, Shun T T, Chang C H, et al. Microstructures and properties of Al0.3CoCrFeNiMnx high-entropy alloys [J]. Mater. Chem. Phys., 2017, 210: 146
21 Wang Y F, Ma S G, Chen X H, et al. Optimizing mechanical properties of AlCoCrFeNiTix high-entropy alloys by tailoring microstructures [J]. Acta Metall. Sin. Eng. Lett., 2013, 26: 277
22 Chen Q S, Dong Y, Zhang J J, et al. Microstructure and properties of AlCoCrFeNiBx(x=0, 0.1, 0.25, 0.5, 0.75, 1.0) high entropy alloys [J]. Rare Met. Mater. Eng., 2017, 46: 651
陈秋实, 董勇, 张峻嘉等. AlCoCrFeNiBx(x=0, 0.1, 0.25, 0.5, 0.75, 1.0)高熵合金的微观结构与性能 [J]. 稀有金属材料与工程, 2017, 46: 651
23 Wang X Y, Liu Q, Huang Y B, et al. Effect of Ti content on the microstructure and corrosion resistance of CoCrFeNiTix high entropy alloys prepared by laser cladding [J]. Materials, 2020, 13(10): 2209
24 Xu Q, Huang Y B, Liu Q, et al. Characterization and corrosion resistance study of laser-clad (CoCrFeNi)95Nb5 high-entropy alloy coating [J]. Electroplat. Finish., 2019, 38: 536
许诠, 黄燕滨, 刘谦等. 激光熔覆法制备(CoCrFeNi)95Nb5高熵合金涂层的表征与耐蚀性研究 [J]. 电镀与涂饰, 2019, 38: 536
25 Zhang B. XPS and first-principles study on electrochemical corrosion behavior of sputtered Fe-Cr alloys nanocrystalline thin films [D]. Dalian: Dalian University of Technology, 2016
张滨. Fe-Cr合金溅射纳米晶薄膜腐蚀电化学行为的XPS及第一性原理计算的研究 [D]. 大连: 大连理工大学, 2016
26 An X L. The microstructure and properties of high entropy alloy TixFeCoCrWSi coating synthesised by laser cladding [D]. Guiyang: Guizhou University, 2015
安旭龙. 激光熔覆制备TixFeCoCrWSi高熵合金组织与性能研究 [D]. 贵阳: 贵州大学, 2015
27 Li Q H, Yue T M, Guo Z N, et al. Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process [J]. Metall. Mater. Trans., 2013, 44A: 1767
28 Lee C P, Chen Y Y, Hsu C Y, et al. The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx [J]. J. Electrochem. Soc., 2007, 154: C424
29 Shang C Y, Axinte E, Sun J, et al. CoCrFeNi (W1-xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering [J]. Mater. Des., 2017, 117: 193
30 Qiu X W, Liu C G. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding [J]. J. Alloys Compd., 2013, 553: 216
31 Jiang H, Jiang L, Li D X, et al. Effect of Niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys [J]. J. Mater. Sci. Technol., 2017, 33: 712
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!