Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (9): 641-648    DOI: 10.11901/1005.3093.2022.526
ARTICLES Current Issue | Archive | Adv Search |
Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy
MAO Jianjun1, FU Tong2, PAN Hucheng1(), TENG Changqing1, ZHANG Wei1,2, XIE Dongsheng2, WU Lu1
1.The First Sub-Institute, Nuclear Power Institute of China, Chengdu 610005, China
2.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), College of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy. Chinese Journal of Materials Research, 2023, 37(9): 641-648.

Download:  HTML  PDF(14071KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a burnable poison element, boron (B) has been successfully added into the AlNbMoZr based refractory high-entropy alloy (RHEA) via arc melting method, thus a novel high strength nuclear RHEA material with neutron toxic properties was developed. Hence, the alloy was subjected to irradiation of Kr ions of 4 MeV intensity to assess its irradiation damage behavior in terms of its microstructure and mechanical property evolution. The results of room temperature compression testing show that AlNbMoZrB alloy has excellent mechanical property with compression yield strength ~1180 MPa, fracture strength ~1274 MPa, and plasticity ~4.8%. By comparatively examining the phase structure and microstructure evolution of AlNbMoZrB alloy before and after irradiation, it is found that AlNbMoZrB alloy has a typical dendrite structure, in which the dendrite region is a matrix phase with disordered BCC structure, and the interdendrite region is composed of FCC structure Al-Zr phase and α-Zr phase. After irradiation with Kr ions, the α-Zr phase underwent an amorphous transformation. At the same time, high density <100> and 1/2<111> dislocation loops are also generated. The volume density of the dislocation loop is ~4.11×1022 m-3 and the size is between 12 nm and 16 nm after subjected Kr ions irradiation at room temperature. The volume density of the dislocation loop decreased to ~1.63×1022 m-3 and the size increased to 23~27 nm after subjected the same Kr ions irradiation at 300℃.

Key words:  metallic materials      refractory high entropy alloy      mechanical properties      ion irradiation      dislocation loop      microstructure     
Received:  08 October 2022     
ZTFLH:  TG113  
Fund: National Natural Science Foundation of China(U2067218);National Natural Science Foundation of China(U2167213);National Natural Science Foundation of China(U2241235);Funds of Science & Technology Department of Sichuan Province(21MZGC0400);Funds of Science & Technology Department of Sichuan Province(2022JDJQ0021);China National Nuclear Corporation (CNNC) Science Fund for Talented Young Scholars(CNNC-2021-31);Funds of Science and Technology on Reactor Fuel and Materials Laboratory(6142A06190510);Fundamental Research Funds for the Central Universities(N2202020)
Corresponding Authors:  PAN Hucheng, Tel: (024)83687746, E-mail: panhc@atm.neu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.526     OR     https://www.cjmr.org/EN/Y2023/V37/I9/641

Fig.1  Compressive stress-strain curves (a) and XRD spectrum (b) of as-cast AlNbMoZrB alloy
Alloy

σc0.2

/MPa

σp

/MPa

εp

/%

Al5Nb40Mo40Zr15B0.1-cast118012744.8
Table 1  Compression yield strength, fracture strength and compression ratio of as-cast and solid-solution alloys at room temperature
Fig.2  Backscatter diagram, EDS mapping and point results of as-cast AlNbMoZrB alloy (a) (b) corresponding Backscatter images of as-cast AlNbMoZrB alloy, and (c) corresponding Backscatter, EDS mapping and point results image of typical dendritic region of as-cast AlNbMoZrB alloy
PointsAlNbMoZr

Nominal composition

A (white dendrite rigon)

B (gray interdendritic rigon)

C (black interdendritic rigon)

5

2.06

15.65

14.67

40

46.89

19.97

19.43

40

42.31

27.88

6.62

15

8.74

36.50

59.28

Table 2  EDS point results of as-cast AlNbMoZrB alloy (atomic fraction, %)
Fig.3  Backscatter diagram, EDS mapping and point results of as-cast AlNbMoZrB alloy under low-voltage
Fig.4  TEM images of AlNbMoZrB under the condition of 4.8×1015/cm2 Kr ion irradiation at room temperature (a) typical regions spot scanning under TEM-EDS mode, (b) corresponding TEM and SAED images of the region 3 in Fig.4a, (c) corresponding TEM and SAED images of the region 1 in Fig.4a (d) (e) (f) TEM image of AlNbMoZrB under 4.8×1015/cm2 Kr ion irradiation at 300℃ (d) typical regions spot scanning under TEM-EDS mode, (e) corresponding TEM and SAED images of the region 4 in Fig.4d, (f) corresponding TEM and SAED images of the region 1 in Fig.4 ddot sweep image (e) BCC crystal image (f) BCC crystal
PointsAlNbMoZr

a1

a2

a3

a4

a5

a6

6.84

9.83

1.97

0.85

1.93

9.17

9

21.7

37.67

40.16

39.35

19.21

12.76

27.37

45.46

44.07

36.84

27.36

71.4

41.09

14.91

14.92

13.15

44.26

Table 3  EDS point results of as-cast AlNbMoZrB alloy irradiated under room temperature (atomic fraction,%)
PointsAlNbMoZr

d1

d2

d3

d4

d5

d6

d7

2.37

1.88

1.91

2.65

6.61

4.48

4.31

42.27

42.64

42.84

45.38

23

11.01

20.61

41.46

39.18

38.62

34.76

21.36

9.55

5.25

13.89

16.3

16.64

17.21

49.04

74.96

69.83

Table 4  EDS point results of AlNbMoZrB alloy irradiated under 300℃ (atomic fraction, %)
Fig.5  two-beam conditioned TEM images of AlNbMoZrB at room temperature (a~c) and at 300℃ (d~f)
1 Zhang P, Jiang L, Yang J X, et al. Research progress in refractory high entropy alloys for nuclear applications [J]. Mater. Rev., 2022, 36(14):1
doi: 10.1179/imr.1991.36.1.1
张 平, 蒋 丽, 杨金学 等. 核用难熔高熵合金的研究进展 [J]. 材料导报, 2022, 036(14):1.
2 Li T X, Lu Y P, Cao Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials [J]. Acta Metall. Sin., 2021, 57: 42
李天昕, 卢一平, 曹志强 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战 [J]. 金属学报, 2021, 57: 42
3 Wang X J, Qiao J W, Wu Y C. High Entropy Alloys: the new irradiation-resistant candidate materials towards the fusion reactors [J]. Mater. Rev., 2020, 34(17):9
王雪姣, 乔珺威, 吴玉程. 高熵合金:面向聚变堆抗辐照损伤的新型候选材料[J]. 材料导报, 2020, 34(17):9
4 Yong Z A, Ttz A, Zhi T B, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61:1
doi: 10.1016/j.pmatsci.2013.10.001
5 Yan X H, Zhang Y. Preparation and forming process of high-entropy alloy [J]. J. Netshape Form. Eng., 2022, 14(1): 19
闫薛卉, 张勇. 高熵合金的制备成形加工工艺 [J]. 精密成形工程, 2022, 14(01): 19
6 He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta. Mater., 2014, 62: 105
doi: 10.1016/j.actamat.2013.09.037
7 Tripathy B, Saha R, Bhattacharjee P P. Microstructure and unusually strong recrystallization texture of the FCC phase of a cost-effective high-strength dual-phase AlCrFe2Ni2 high entropy alloy [J]. Intermetallics, 2022, 145: 107559.
doi: 10.1016/j.intermet.2022.107559
8 Gong Z J, Li C H, Li XY, et al. Microstructure and phase transition during heat treatment of a new Cu rich high-entropy alloy [J]. Journal of Netshape Forming Engineering, 2022, 14(2): 83
龚子杰, 李春辉, 李晓宇 等. 新型含Cu高熵合金的微观组织及热处理过程相变 [J]. 精密成形工程, 2022, 14(02): 83
9 Wang J, Huang W G. Microstructure and mechanical properties of CrMoVNbFex high-entropy alloys [J]. Chin. J. Mater. Res., 2016, 30: 609
王 江, 黄维刚. CrMoVNbFex高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30: 609
10 Zka J, Jaroslav M, Vesel J, et al. Microstructure and room temperature mechanical properties of different 3 and 4 element medium entropy alloys from HfNbTaTiZr System [J]. Entropy, 2019, 21(2):114
doi: 10.3390/e21020114
11 Gao N, Long Y, Peng H Y, et al. Microstructure and mechanical properties of TiVNbTa refractory high-entropy alloy prepared by powder metallurgy [J]. Chin. J. Mater. Res., 2019, 33: 572
高 楠, 龙 雁, 彭海燕 等. 粉末冶金TiVNbTa难熔高熵合金的组织和力学性能 [J]. 材料研究学报, 2019, 33: 572
12 Ma A, Hws B, Hjra B. Mo and Ta Addition in NbTiZr Medium Entropy Alloy to Overcome Tensile Yield Strength-Ductility Trade-off. [J]. J. Mater. Sci. Technol., 2022, 109: 176
doi: 10.1016/j.jmst.2021.08.073
13 Dirras G, Gubicza J, Heczel A, et al. Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy [J]. Mater. Charact., 2015, 108: 1
doi: 10.1016/j.matchar.2015.08.007
14 Senkov O N, Rao S, Chaput K J, et al. Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys [J]. Acta. Mater., 2018, 151: 201
doi: 10.1016/j.actamat.2018.03.065
15 Niu P D, Li R D, Yuan T C, et al. Research progress of high-entropy alloys by additive manufacturing [J]. J. Netshape Form. Eng., 2019, 11(4): 51
牛朋达, 李瑞迪, 袁铁锤 等. 增材制造高熵合金研究进展 [J]. 精密成形工程, 2019, 11(04): 51
16 Xie H B, Liu G Z, Guo J J. Effect of Zr addition on microstructure and corrosion properties of AlFeCrCoCuZrx high-entropy alloys [J]. J. Mater. Eng., 2016, 44(6): 44
谢红波, 刘贵仲, 郭景杰. Zr元素对AlFeCrCoCuZrx高熵合金组织及腐蚀性能的影响 [J]. 材料工程, 2016, 44(6): 44
17 Li T X, Miao J W, Lu Y P, et al, Effect of Zr on the as-cast microstructure and mechanical properties of lightweight Ti2VNbMoZrx refractory high-entropy alloys [J]. Int. J. Refract. Met. H., 2022, 103: 105762
doi: 10.1016/j.ijrmhm.2021.105762
18 Hong D, Wang H B, Hou L G, et al. Research progress of effect of interstitial atoms on high-entropy alloy's microstructure and properties [J]. Nonferr. Metal. Sci. Eng., 2020, 11(6):7
洪 达, 王和斌, 侯陇刚 等. 间隙原子对高熵合金组织及性能影响的研究现状 [J]. 有色金属科学与工程, 2020, 11(6):7
19 Zong Y, Hashimoto N, Oka H. Study on irradiation effects of refractory bcc high-entropy alloy [J]. Nucl. Mater. Energy., 2022, 31: 101158
20 Li Y, Zhang P, Zhang J, et al. Oxidation behavior of AlCoCrFeNiSi high-entropy alloys at 1100 [J]. Corros. Sci., 2021, 190(1): 109633
doi: 10.1016/j.corsci.2021.109633
21 Li G, Wen Y, Yu Z M, et al. Effect of Al content on properties of CrFeNiAlxSi high entropy alloy [J]. Chin. J. Mater. Res., 2021, 35(9): 712
李 刚, 温 影, 于中民 等. Al含量对CrFeNiAl(x)Si系高熵合金性能的影响 [J]. 材料研究学报, 2021, 35(9): 712
22 Kang B, Kong T, Dan N H, et al. Effect of boron addition on the microstructure and mechanical properties of refractory Al0.1CrNbVMo high-entropy alloy [J]. Int. J. Refract. Met. H., 2021, 100: 105636
doi: 10.1016/j.ijrmhm.2021.105636
23 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
doi: 10.1063/1.3587228
24 Takeuchi A, Inoue A. Quantitative evaluation of critical cooling rate for metallic glasses [J]. Mater. Sci. Eng., 2001, 304-306A: 446
25 Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase [J]. Prog. Nat. Sci-Mater., 2011, 21(6): 433
26 Griffiths M. A review of microstructure evolution in zirconium alloys during irradiation [J]. J. Nucl. Mater., 1988, 159: 190-218
doi: 10.1016/0022-3115(88)90093-1
27 Lefebvre F, Lemaignan C. Heavy ion-induced amorphlsation of Zr(Fe, Cr)2 precipitates in Zircaloy-4 [J]. J. Nucl. Mater., 1989, 165(2):122-127
doi: 10.1016/0022-3115(89)90240-7
28 El-Atwani O, Esquivel E, Efe M, et al. Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: Microstructure, effect of dpa rate, temperature, and grain size [J]. Acta. Mate., 2018, 149: 206
doi: 10.1016/j.actamat.2018.02.035
29 Arakawa K, Hatanaka M, Kuramoto E, et al. Changes in the burgers vector of perfect dislocation loops without contact with the external dislocations [J]. Phys. Rev. Lett., 2006, 96(12): 125506
doi: 10.1103/PhysRevLett.96.125506
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
No Suggested Reading articles found!