Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (11): 875-880    DOI: 10.11901/1005.3093.2020.086
ARTICLES Current Issue | Archive | Adv Search |
Band Gap Energy and Near Band Edge Emission Blue Shifts of ZnO Nanorods Prepared by Electrodeposition
TANG Yang1,2()
1.Center for Green Energy and Architecture, China Energy Investment Corporation, Beijing 102211, China
2.National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China
Cite this article: 

TANG Yang. Band Gap Energy and Near Band Edge Emission Blue Shifts of ZnO Nanorods Prepared by Electrodeposition. Chinese Journal of Materials Research, 2020, 34(11): 875-880.

Download:  HTML  PDF(3826KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

ZnO nanorod arrays were fabricated by electrodeposition in the traditional electrolytes incorporated with addition of salts such as NH4NO3 and Ga(NO3)3, so that the phyisical properties, such as the diameter, density, band gap energy, near band edge emission and stokes shift of the prepared ZnO nanorod arrays may be designed and tailored. Namely their diameter can be adjusted between 63 nm to 77 nm. With the use of Ga(NO3)3 as the additive, the density of ZnO nanorod arrays can be decreased to 7.0×109 /cm2; the band gap energy of the ZnO nanorod arrays showed blue shift from 53 meV to 73 meV with the stokes shift of 23 meV, which indicated that the new process of involving the Ga(NO3)3 resulted in the suppression of the non-radiative recombination.

Key words:  inorganic nonmetallic materials      ZnO      electrodeposition      gallium nitrate      band gap blue shift      near band edge emission     
Received:  22 March 2020     
ZTFLH:  TM23  
Fund: National Natural Science Foundation of China(61404007);the Beijing Talents Fund(2015000021223ZK38)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.086     OR     https://www.cjmr.org/EN/Y2020/V34/I11/875

Fig.1  Scanning electron microscopy images of the samples 1~5 (a) sample 1, (b) sample 2, (c) sample 3, (d) sample 4, (e) sample 5
Samples

Zn(NO3)2

/mmol·L-1

NH4NO3

/mmol·L-1

Ga(NO3)3

/μmol·L-1

Diameter

/nm

Density

/109 cm-2

15--69±2412.0
25-1077±2710.0
35501063±248.3
45502070±288.1
55505073±277.0
Table 1  Diameter and density of the ZnO nanorods
Fig.2  Transmission and reflection spectra
Fig.3  Plots of band gap energy fitting curves with the red line as the linear fitting curve
Fig.4  Room temperature photoluminescence spectra
Fig.5  Gauss fitting curves of the photoluminescence spectra of the samples 2~5 (300~470 nm)
Samples

NBE 1

/eV

NBE 2

/eV

NBE 3

/eV

Stokes shift /meV
13.353--107
23.4263.2843.05884
33.3753.2703.006125
43.3893.2902.940111
53.4063.3032.98194
Table 2  The near band edge emission (NBE) and stokes shift
1 Jiang H, Jin Y M, Ye X, et al. Review of China's PV industry in the first half of 2020 and outlook in the second half of 2020 [J]. Solar Energy, 2020, 317(9): 5
江华, 金艳梅, 叶幸等. 2020年中国光伏产业上半年回顾与下半年展望 [J]. 太阳能, 2020, 317(9): 5
2 Xie L, Wang P, Li Z F, et al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33: 728
谢亮, 王平, 李之锋等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33: 728
3 Cao P, Bai Y. Preparation and photocatalytic properties of N-doped nano-ZnO/PVC composites [J]. Chin. J. Mater. Res., 2015, 29: 213
曹萍, 白越. N掺杂纳米ZnO/聚氯乙烯复合材料的制备和光催化性能 [J]. 材料研究学报, 2015, 29: 213
4 Chen Y, Zhang P, Shang Y H, et al. Controllable synthesis and photocatalytic activity of ZnO nano-cones with different aspect ratio [J]. Chin. J. Mater. Res., 2017, 31: 619
陈燕, 张萍, 尚永辉等. 不同纵横比ZnO纳米锥的可控合成及其光催化性能 [J]. 材料研究学报, 2017, 31: 619
5 Li G J, Wang Z, Wang Q, et al. Effect of oxidation time under high magnetic field on the microstructure and optical properties of oxidized co-doped ZnO films [J]. Acta Metall. Sin., 2014, 50: 1538
李国建, 王振, 王强等. 强磁场作用时间对氧化法制备的Co掺杂ZnO薄膜微观结构和光学性能的影响 [J]. 材料研究学报, 2014, 50: 1538
6 Hu Y, Xu S W, Li X, et al. Performance of self-powered UV photodetector based on ZnO/ZnS Heterojunction [J]. Chin. J. Mater. Res., 2019, 33: 523
胡轶, 徐思伟, 李想等. 自供能ZnO/ZnS异质结紫外探测器的性能研究 [J]. 材料研究学报, 2019, 33: 523
7 Zhao H X, Fang X, Wang Y B, et al. Formation of interface defects of ZnO/ZnS core-shell nanowires and its optical properties investigations [J]. Chin. Opt., 2019, 12: 872
赵海霞, 方铉, 王颜彬等. ZnO/ZnS核壳纳米线界面缺陷的形成及发光特性研究 [J]. 中国光学, 2019, 12: 872
8 Su S C, Yang X D, Hu C D. Fabrication of ZnO nanowall-network ultraviolet photodetector on Si substrates [J]. J. Semicond., 2011, 32: 074008
9 Sun X Y, Azad F, Wang S P, et al. Low-cost Flexible ZnO microwires array ultraviolet photodetector embedded in PAVL substrate [J]. Nano Res. Lett., 2018, 13: 277
10 Cao S Y, Zhang J J, Li W Q, et al. Near room temperature and large-area synthesis of ZnO/Cu2O heterojunction for photocatalytic properties [J]. Chem. Phys. Lett., 2018, 692: 14
11 Amany A, Wang D B, Wang J Z, et al. Enhanced the UV response of AlN coated ZnO nanorods photodetector [J] J. Alloys Compd., 2019, 776: 111
12 Kim D, Yun I, Kim H. Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells [J]. Curr. Appl. Phys., 2010, 10(): S459
13 Luka G, Witkowski B S, Wachnicki L. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition [J]. Mater. Sci. Eng., 2014, 186B: 15
14 Coman T, Ursu E L, Nica V, al el. Improving the uncommon (110) growing orientation of Al-doped ZnO thin films through sequential pulsed laser deposition [J]. Thin Solid Films, 2014, 571: 198
15 Duygulu N E, Kodolbas A O, Ekerim A. Effects of argon pressure and r.f. power on magnetron sputtered aluminum doped ZnO thin films [J]. J. Cryst. Growth, 2014, 394: 116
16 Kumar A, Huang N, Staedler T, et al. Mechanical characterization of aluminum doped zinc oxide (Al: ZnO) nanorods prepared by sol-gel method [J]. Appl. Surf. Sci., 2013, 265: 758
17 Chen Z W, Zhan G H, Wu Y P, et al. Sol-gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology [J]. J. Alloys Compd., 2014, 587: 692
18 Tang Y, Chen J. Optical band gap blue shift and stokes shift in Al-doped ZnO nanorods by electrodeposition [J]. Chin. J. Lumin., 2014, 35: 1165
汤洋, 陈颉. 电沉积掺铝氧化锌纳米柱的光学带隙蓝移与斯托克斯位移 [J]. 发光学报, 2014, 35: 1165
19 Tang Y, Guo L D, Zhang Z G, et al. Aluminium doping and optical property control of electrodeposited zinc oxide nanorods induced by ammonium nitrate [J]. Opt. Precis. Eng., 2015, 23: 1288
汤洋, 郭逦达, 张增光等. 硝酸铵诱导电沉积氧化锌纳米柱的铝掺杂及光学性质操控 [J]. 光学·精密工程, 2015, 23: 1288
20 Chen J, Ye H, Aé L, et al. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications [J]. Sol. Energ. Mat. Sol., 2011, 95C: 1437
21 Guo L D, Tang Y, Chiang F K, et al. Density-controlled growth and passivation of ZnO nanorod arrays by electrodeposition [J]. Thin Solid Films, 2017, 638: 426
22 Tang Y, Chen J, Greiner D, et al. Fast growth of high work function and high-quality ZnO nanorods from an aqueous solution [J]. J. Phys. Chem., 2011, 115C: 5239
23 Cho S, Jung S H, Jang J W, et al. Simultaneous synthesis of Al-doped ZnO nanoneedles and zinc aluminum hydroxides through Use of a seed layer [J]. Cryst. Growth Des., 2008, 8: 4553
24 Mahamuni S, Borgohain K, Bendre B S, et al. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots [J]. J. Appl. Phys., 1999, 85: 2861
25 Tang Y, Zhao Y, Zhang Z G, et al. Hydrothermal synthesis and properties of ZnO nanorod arrays [J] Chin. J. Mater. Res., 2015, 29: 529
汤洋, 赵颖, 张增光等. 氧化锌纳米柱阵列的水热合成及其性能 [J]. 材料研究学报, 2015, 29: 529
[1] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[2] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[3] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[4] YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] LIU Siyu, LI Zhengyuan, CHEN Lijia, LI Feng. Mechanical Properties of In-situ Synthesised Nano Al2O3/Al-Zn-Cu Composites[J]. 材料研究学报, 2022, 36(4): 307-313.
[6] OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. 材料研究学报, 2022, 36(2): 152-160.
[7] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[8] FENG Kai, L Guangzhe, L Bin. Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders[J]. 材料研究学报, 2021, 35(8): 591-596.
[9] WANG Hao, ZHAO Hongfeng, KANG Jiashuang, ZHOU Yuanxiang, XIE Qingyun. Properties of ZnO Varistor Ceramics Co-doped with B2O3 and Al2O3[J]. 材料研究学报, 2021, 35(2): 110-114.
[10] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
[11] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[12] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[13] LIN Wenwen, HE Xiaochun, XU Zhijun, WANG Ziheng, CHU Ruiqing. Influence of Bi2WO6 on Electric Properties of ZnO Varistor Ceramics[J]. 材料研究学报, 2020, 34(4): 285-290.
[14] ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao. Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries[J]. 材料研究学报, 2020, 34(3): 191-197.
[15] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
No Suggested Reading articles found!