|
|
Band Gap Energy and Near Band Edge Emission Blue Shifts of ZnO Nanorods Prepared by Electrodeposition |
TANG Yang1,2( ) |
1.Center for Green Energy and Architecture, China Energy Investment Corporation, Beijing 102211, China 2.National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China |
|
Cite this article:
TANG Yang. Band Gap Energy and Near Band Edge Emission Blue Shifts of ZnO Nanorods Prepared by Electrodeposition. Chinese Journal of Materials Research, 2020, 34(11): 875-880.
|
Abstract ZnO nanorod arrays were fabricated by electrodeposition in the traditional electrolytes incorporated with addition of salts such as NH4NO3 and Ga(NO3)3, so that the phyisical properties, such as the diameter, density, band gap energy, near band edge emission and stokes shift of the prepared ZnO nanorod arrays may be designed and tailored. Namely their diameter can be adjusted between 63 nm to 77 nm. With the use of Ga(NO3)3 as the additive, the density of ZnO nanorod arrays can be decreased to 7.0×109 /cm2; the band gap energy of the ZnO nanorod arrays showed blue shift from 53 meV to 73 meV with the stokes shift of 23 meV, which indicated that the new process of involving the Ga(NO3)3 resulted in the suppression of the non-radiative recombination.
|
Received: 22 March 2020
|
|
Fund: National Natural Science Foundation of China(61404007);the Beijing Talents Fund(2015000021223ZK38) |
1 |
Jiang H, Jin Y M, Ye X, et al. Review of China's PV industry in the first half of 2020 and outlook in the second half of 2020 [J]. Solar Energy, 2020, 317(9): 5
|
|
江华, 金艳梅, 叶幸等. 2020年中国光伏产业上半年回顾与下半年展望 [J]. 太阳能, 2020, 317(9): 5
|
2 |
Xie L, Wang P, Li Z F, et al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33: 728
|
|
谢亮, 王平, 李之锋等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33: 728
|
3 |
Cao P, Bai Y. Preparation and photocatalytic properties of N-doped nano-ZnO/PVC composites [J]. Chin. J. Mater. Res., 2015, 29: 213
|
|
曹萍, 白越. N掺杂纳米ZnO/聚氯乙烯复合材料的制备和光催化性能 [J]. 材料研究学报, 2015, 29: 213
|
4 |
Chen Y, Zhang P, Shang Y H, et al. Controllable synthesis and photocatalytic activity of ZnO nano-cones with different aspect ratio [J]. Chin. J. Mater. Res., 2017, 31: 619
|
|
陈燕, 张萍, 尚永辉等. 不同纵横比ZnO纳米锥的可控合成及其光催化性能 [J]. 材料研究学报, 2017, 31: 619
|
5 |
Li G J, Wang Z, Wang Q, et al. Effect of oxidation time under high magnetic field on the microstructure and optical properties of oxidized co-doped ZnO films [J]. Acta Metall. Sin., 2014, 50: 1538
|
|
李国建, 王振, 王强等. 强磁场作用时间对氧化法制备的Co掺杂ZnO薄膜微观结构和光学性能的影响 [J]. 材料研究学报, 2014, 50: 1538
|
6 |
Hu Y, Xu S W, Li X, et al. Performance of self-powered UV photodetector based on ZnO/ZnS Heterojunction [J]. Chin. J. Mater. Res., 2019, 33: 523
|
|
胡轶, 徐思伟, 李想等. 自供能ZnO/ZnS异质结紫外探测器的性能研究 [J]. 材料研究学报, 2019, 33: 523
|
7 |
Zhao H X, Fang X, Wang Y B, et al. Formation of interface defects of ZnO/ZnS core-shell nanowires and its optical properties investigations [J]. Chin. Opt., 2019, 12: 872
|
|
赵海霞, 方铉, 王颜彬等. ZnO/ZnS核壳纳米线界面缺陷的形成及发光特性研究 [J]. 中国光学, 2019, 12: 872
|
8 |
Su S C, Yang X D, Hu C D. Fabrication of ZnO nanowall-network ultraviolet photodetector on Si substrates [J]. J. Semicond., 2011, 32: 074008
|
9 |
Sun X Y, Azad F, Wang S P, et al. Low-cost Flexible ZnO microwires array ultraviolet photodetector embedded in PAVL substrate [J]. Nano Res. Lett., 2018, 13: 277
|
10 |
Cao S Y, Zhang J J, Li W Q, et al. Near room temperature and large-area synthesis of ZnO/Cu2O heterojunction for photocatalytic properties [J]. Chem. Phys. Lett., 2018, 692: 14
|
11 |
Amany A, Wang D B, Wang J Z, et al. Enhanced the UV response of AlN coated ZnO nanorods photodetector [J] J. Alloys Compd., 2019, 776: 111
|
12 |
Kim D, Yun I, Kim H. Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells [J]. Curr. Appl. Phys., 2010, 10(): S459
|
13 |
Luka G, Witkowski B S, Wachnicki L. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition [J]. Mater. Sci. Eng., 2014, 186B: 15
|
14 |
Coman T, Ursu E L, Nica V, al el. Improving the uncommon (110) growing orientation of Al-doped ZnO thin films through sequential pulsed laser deposition [J]. Thin Solid Films, 2014, 571: 198
|
15 |
Duygulu N E, Kodolbas A O, Ekerim A. Effects of argon pressure and r.f. power on magnetron sputtered aluminum doped ZnO thin films [J]. J. Cryst. Growth, 2014, 394: 116
|
16 |
Kumar A, Huang N, Staedler T, et al. Mechanical characterization of aluminum doped zinc oxide (Al: ZnO) nanorods prepared by sol-gel method [J]. Appl. Surf. Sci., 2013, 265: 758
|
17 |
Chen Z W, Zhan G H, Wu Y P, et al. Sol-gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology [J]. J. Alloys Compd., 2014, 587: 692
|
18 |
Tang Y, Chen J. Optical band gap blue shift and stokes shift in Al-doped ZnO nanorods by electrodeposition [J]. Chin. J. Lumin., 2014, 35: 1165
|
|
汤洋, 陈颉. 电沉积掺铝氧化锌纳米柱的光学带隙蓝移与斯托克斯位移 [J]. 发光学报, 2014, 35: 1165
|
19 |
Tang Y, Guo L D, Zhang Z G, et al. Aluminium doping and optical property control of electrodeposited zinc oxide nanorods induced by ammonium nitrate [J]. Opt. Precis. Eng., 2015, 23: 1288
|
|
汤洋, 郭逦达, 张增光等. 硝酸铵诱导电沉积氧化锌纳米柱的铝掺杂及光学性质操控 [J]. 光学·精密工程, 2015, 23: 1288
|
20 |
Chen J, Ye H, Aé L, et al. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications [J]. Sol. Energ. Mat. Sol., 2011, 95C: 1437
|
21 |
Guo L D, Tang Y, Chiang F K, et al. Density-controlled growth and passivation of ZnO nanorod arrays by electrodeposition [J]. Thin Solid Films, 2017, 638: 426
|
22 |
Tang Y, Chen J, Greiner D, et al. Fast growth of high work function and high-quality ZnO nanorods from an aqueous solution [J]. J. Phys. Chem., 2011, 115C: 5239
|
23 |
Cho S, Jung S H, Jang J W, et al. Simultaneous synthesis of Al-doped ZnO nanoneedles and zinc aluminum hydroxides through Use of a seed layer [J]. Cryst. Growth Des., 2008, 8: 4553
|
24 |
Mahamuni S, Borgohain K, Bendre B S, et al. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots [J]. J. Appl. Phys., 1999, 85: 2861
|
25 |
Tang Y, Zhao Y, Zhang Z G, et al. Hydrothermal synthesis and properties of ZnO nanorod arrays [J] Chin. J. Mater. Res., 2015, 29: 529
|
|
汤洋, 赵颖, 张增光等. 氧化锌纳米柱阵列的水热合成及其性能 [J]. 材料研究学报, 2015, 29: 529
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|