Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (9): 655-667    DOI: 10.11901/1005.3093.2022.311
ARTICLES Current Issue | Archive | Adv Search |
Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N
ZHAO Zhengxiang1, LIAO Luhai1, XU Fanghong2, ZHANG Wei2, LI Jingyuan1()
1.Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co., Ltd., Taiyuan 030003, China
Cite this article: 

ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N. Chinese Journal of Materials Research, 2023, 37(9): 655-667.

Download:  HTML  PDF(24005KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hot deformation behavior and microstructure evolution of super austenitic stainless steel 24Cr-22Ni-7Mo-0.4N were studied by uniaxial compression tests at temperatures from 1123 K to 1473 K under strain rates of 0.001~10 s-1 up to the true strain of 0.8. The deformation parameters were modeled by Arrhenius equation and Zener-Hollomon parameter (Z). The peak stress and critical stress for dynamic recrystallization was found to exhibit a linear relationship with ln(Z/A), the thermal deformation activation energy of the steel was 497.11 kJ/mol. Based on the dynamic material model, the processing maps under different plastic strains were established. Electron backscatter diffraction (EBSD) was used to characterize the microstructure of the steel under different deformation conditions. The softening mechanism of the steel under most deformation conditions is discontinuous dynamic recrystallization (DDRX). Based on the analysis of microstructure and processing map, the optimum processing domain for hot deformation is identified as the deformation temperature of 1150~1200℃ and strain rate of 0.1~1 s-1.

Key words:  metallic materials      super austenitic stainless steel      hot deformation      microstructure      processing map      dynamic recrystallization     
Received:  02 June 2022     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(U1806220);Science and Technology Major Project of Shanxi Province(20191102006)
Corresponding Authors:  LI Jingyuan, Tel: (010)82376939, E-mail: lijy@ustb.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.311     OR     https://www.cjmr.org/EN/Y2023/V37/I9/655

CSiCrNiMoMnCuNFe
0.0110.08224.7222.047.113.370.330.424Bal.
Table 1  Chemical composition of super austenitic stainless steel 24Cr-22Ni-7Mo-0.4N (%,mass fraction)
Fig.1  Original structure in super austenitic stainless steel 24Cr-22Ni-7Mo-0.4N
Fig.2  Flow curves of super austenitic stainless steel 24Cr-22Ni-7Mo-0.4N deformed at different temperatures and strain rates (a) 0.001 s-1; (b) 0.01 s-1; (c) 0.1 s-1; (d) 1 s-1; (e) 10 s-1
Fig.3  Variation of the work hardening rate (θ=σεT, ε˙) with stress at strain rate of (a) 10 s-1 and (b) 10 s-1 in super austenitic stainless steel 24Cr-22Ni-7Mo-0.4N
Fig.4  Variation of (-∂θ/∂σ) with respect to stress (MPa) at different temperatures and strain rate (a) 1 s-1 and (b) 10 s-1
Fig.5  Variation of lnsinh(ασp) withthe strain rate at different temperature (a), the temperature at different strain rate (b) (c) logarithm of the Z-parameter and
Fig.6  Variation of peak stress (σp) (a), critical stress (σc) (b), peak strain (εp) (c) and critical strain (εc) with ln(Z/A) (d)
Fig.7  Processing map of super austenitic stainless steel corresponding to plastic strains of 0.3 (a), 0.4(b), 0.5 (c) and 0.6(d) and the processing map is divided into 6 different domains for microstructural analysis (d)
Fig.8  IPF map corresponding to different conditions (a) 950℃, 0.001 s-1; (b) 950℃, 10 s-1; (c) 1050℃, 0.1 s-1; (d) 1050℃, 0.001 s-1; (e) 1200℃, 10 s-1; (f) 1200℃, 0.001 s-1; (g) 1200℃, 1 s-1; (h) 1200℃, 0.1 s-1
Fig.9  Microstructures of super austenitic stainless steel corresponding to different conditions (a) 950℃, 0.001 s-1; (b) 1000℃, 0.01 s-1; (c) 950℃, 0.1s-1; (d) 1050℃, 0.001 s-1
Fig.10  GOS distributions of DRX grains and grain boundary misorientation distribution plot in the samples deformed at 950℃ (a, c), 0.001 s-1 and 950℃, 10 s-1 (b, d)
Fig.11  IPF map and twinning boundaries distribution maps of samples deformed at 950℃, 0.001 s-1 (a, c) and 950℃, 10 s-1 (b, d)
Fig.12  Misorientation development corresponding to the designated white lines in Fig.11
Fig.13  Adiabatic temperature rise at different deformation conditions
Fig.14  Cracking of σ phase in super austenitic stainless steel samples deformed at 1200℃, 10 s-1
1 Zhang S C, Jiang Z H, Li H B, et al. Research and development progress of super austenitic stainless steel 654SMO [J]. J. Iron. Steel. Res., 2019, 31(02): 132
张树才, 姜周华, 李花兵 等. 超级奥氏体不锈钢654SMO的研究进展[J]. 钢铁研究学报, 2019, 31(02): 132
2 Gao J B, Fan S P, Zhang S C, et al. Segregation behavior and homogenizing treatment of a new type super austenitic stainless steel 654SMO [J]. Iron. Steel, 2018, 53(08): 83
高建兵, 范思鹏, 张树才 等. 新型超级奥氏体不锈钢654SMO偏析行为及均匀化工艺 [J]. 钢铁, 2018, 53(08): 83
3 Zhang S, Li H, Jiang Z, et al. Chloride- and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment [J]. Corros. Sci, 2020, 163: 108295
doi: 10.1016/j.corsci.2019.108295
4 Lee T H, Kim S J, Jung Y C, et al. Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900℃ [J]. Metall. Mater. Trans, 2000, 31(7): 1713
doi: 10.1007/s11661-998-0332-6
5 Liu G, Ying H, Shi Z, et al. Hot deformation and optimization of process parameters of an as-cast 6Mo superaustenitic stainless steel: A study with processing map [J]. Mater. Des., 2014, 53: 662
doi: 10.1016/j.matdes.2013.07.065
6 Wang S H, Wu C C, Chen C Y, et al. Cyclic deformation and phase transformation of 6Mo superaustenitic stainless steel [J]. Metal. Mate. Inter., 2007, 13(4): 275
7 Koutsoukis T, Redjamia A, Fourlaris G, et al. Phase transformations and mechanical properties in heat treated superaustenitic stainless steels [J]. Mater. Sci. Eng. A, 2013, 561(20): 477
doi: 10.1016/j.msea.2012.10.066
8 Pu E, Zheng W, Xiang J, et al. Hot deformation characteristic and processing map of superaustenitic stainless steel S32654 [J]. Mater. Sci. Eng. A, 2014, 598(26): 174
doi: 10.1016/j.msea.2014.01.027
9 Zhong X T, Wang L, Huang L K, et al. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy [J]. J. Mater. Sci. Tec., 2020, 42(07): 243
10 Pu E, Han F, Min L, et al. Constitutive modeling for flow behaviors of superaustenitic stainless steel S32654 during hot deformation [J]. J. Iron. Steel. Res., 2016, 23(02): 178
doi: 10.1016/S1006-706X(16)30031-0
11 Lin W A, Zl A, Xin H A, et al. Hot deformation behavior and 3D processing map of super austenitic stainless steel containing 7Mo-0.46N-0.02Ce: Effect of the solidification direction orientation of columnar crystal to loading direction [J]. J. Mater. Sci. Tech., 2021, 13: 618
doi: 10.1179/026708397790285575
12 Lin W A, Chen C, Zl A, et al. Orientation-dependent dynamic recrystallization of super austenitic stainless steels [J]. J. Mate. Res. Tech, 2021, 15:6769
13 Poliak E I, Jonas J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Mater., 1996, 44(1): 127
doi: 10.1016/1359-6454(95)00146-7
14 Konas J, Sellars C M, Tegart W, et al. Strength and structure under hot-working conditions [J]. Metall. Rev., 2013, 14(1): 1
doi: 10.1179/095066069790138056
15 Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. J. Appl. Phy., 1944, 15(1): 22
doi: 10.1063/1.1707363
16 Sabokpa O, Zarei-Hanzaki A, Abedi H R, et al. Artificial neural network modeling to predict the high temperature flow behavior of an AZ81 magnesium alloy [J]. Mater. Des., 2012, 39: 390
doi: 10.1016/j.matdes.2012.03.002
17 Manshadi A, Barnett M R, Hodgson P D, et al. Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization [J]. Metall. Mate. Trans. A, 2008, 39(6): 1359
18 Mcqueen H J, Ryan N D. Constitutive analysis in hot working[J]. Mate. Sci. Eng. A, 2002, 322(1-2): 43
doi: 10.1016/S0921-5093(01)01117-0
19 Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control [J]. Metall. Rev., 1998, 43(6): 243
doi: 10.1179/imr.1998.43.6.243
20 Murty S V S N, Rao B N. Ziegler's Criterion on the Instability Regions in Processing Maps [J]. J. Mater. Sci. Letter, 1998, 17(14):1203
doi: 10.1023/A:1006541710533
21 Luo J, Li L, Li M Q, et al. The flow behavior and processing maps during the isothermal compression of Ti17 alloy [J]. Mater. Sci. Eng. A, 2014, 606(12): 165
doi: 10.1016/j.msea.2014.03.103
22 Zhang S C, Li H B, et al. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Tech., 2020, 42(07): 145
23 Marin R, Combeau H, Zollinger J, et al. σ-Phase Formation in Super Austenitic Stainless Steel During Directional Solidification and Subsequent Phase Transformations [J]. Metall. Mater. Trans. A, 2020, 51(7): 3526
doi: 10.1007/s11661-020-05794-1
24 Liao L, Li J, Xu F, et al. Role of Substitution of Ni by Co During Isothermal Aging of Superaustenitic Stainless Steels: Precipitation Behavior and Phase Transformations [J]. Metall. Mater. Trans. A, 2022, 53(6): 2130
doi: 10.1007/s11661-022-06656-8
25 Zhang S, Jiang Z, Li H, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging [J]. Mate. Charac, 2018, 137:244
26 Koutsoukis T, Redjamia A, Fourlaris G. Phase transformations and mechanical properties in heat treated superaustenitic stainless steels [J]. Mater. Sci. Eng. A, 2013, 561: 477
doi: 10.1016/j.msea.2012.10.066
27 Torga Nch Uk V, Rybalchenko O, Dobatkin S V, et al. Hot deformation and dynamic recrystallization of 18%Mn TWIP steels [J]. Adv. Eng. Mater., 2020, 22(10): 1438
28 Rout M, Ranjan R, Pal S K, et al. EBSD study of microstructure evolution during axisymmetric hot compression of 304LN stainless steel [J]. Mater. Sci. Eng. A, 2018, 711(10): 378
doi: 10.1016/j.msea.2017.11.059
29 Yamaguchi I, Yonemura M. Recovery and Recrystallization Behaviors of Ni-30 Mass Pct Fe Alloy During Uniaxial Cold and Hot Compression [J]. Metall. Mater. Trans. A, 2021, 52(8): 3517
doi: 10.1007/s11661-021-06323-4
30 Mandal S, Bhaduri A K, Sarma V S. Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel [J]. Metall. Mater. Trans. A, 2012, 43(6): 2056
doi: 10.1007/s11661-011-1012-5
31 Fengming, Qin, Hua, et al. Dislocation and twinning mechanisms for dynamic recrystallization of as-cast Mn18Cr18N steel [J]. Mater. Sci. Eng.A, 2017, 684(27): 634
32 Mataya M C, Sackschewsky V E. Effect of internal heating during hot compression on the stress-strain behavior of alloy 304L [J]. Metal. Mater. Trans. A, 1994, 25(12):2737
doi: 10.1007/BF02649226
33 Goetz R L, Semiatin S L. The adiabatic correction factor for deformation heating during the uniaxial compression test [J]. J. Mater. Eng. Perform, 2001, 10(6):710
doi: 10.1361/105994901770344593
34 Mandal S, Jayalakshmi M, Bhaduri A K, et al. Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N) [J]. Metall. Mater. Trans. A, 2014, 45(12): 5645
doi: 10.1007/s11661-014-2480-1
35 Liao L, Li J, Zhao Z, et al. Precipitation and phase transformation behavior during high-temperature aging of a cobalt modified Fe-24Cr-(22-x)Ni-7Mo-xCo superaustenitic stainless steel [J]. J. Mater. Sci, 2022, 57(7): 4771
doi: 10.1007/s10853-021-06740-1
36 Stauffer A C, Koss D A, Mckirgan J B. Microstructural banding and failure of a stainless steel [J]. Metall. Mater. Trans. A, 2004, 35(4):1317
doi: 10.1007/s11661-004-0306-2
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[6] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!