Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (7): 495-501    DOI: 10.11901/1005.3093.2022.109
ARTICLES Current Issue | Archive | Adv Search |
Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels
GUO Fei1,2, ZHENG Chengwu1,2, WANG Pei1,2(), LI Dianzhong1,2
1.Institute of Metal Research, Chinese Academy of Sciences; Shenyang National Laboratory for Materials Science, Shenyang, 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
Cite this article: 

GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels. Chinese Journal of Materials Research, 2023, 37(7): 495-501.

Download:  HTML  PDF(15251KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the increasing cleanliness of steels in recent years, it has made possible for making micro-alloyed steels with rare earth elements. It is found that the addition of rare earths has a significant effect on the solid-state phase transformation behavior of steels, especially for low-carbon low-alloy steels. The effectiveness in modifying the inclusions and inducing nucleation by RE addition has been studied intensively and approved substantially. Whereas, the micro-alloying effect of RE on the ferrite phase transformation of steel is still unclear. The effect of rare earth elements (RE) on austenite-ferrite transformation temperature during continuous cooling, and the isothermal transformation kinetics of Fe-C alloys and Fe-C-Si-Mn low carbon steels has been investigated in this article. It is found that a tiny amount of RE addition can reduce the starting point temperature of proeutectoid ferrite during continuous cooling. Additionally, the addition of RE also changes the ferrite transformation kinetics in the isothermal process: for Fe-C-(RE) alloys, the addition of RE slows down the transformation rate during the whole transformation process due to the pinning carbon diffusion effect; For Fe-C-Si-Mn alloys, RE elements can play a double role of pinning carbon diffusion and changing grain boundary energy, and then prolong the incubation period and decreases the rate of phase transformation during the initial stage, while increase the phase transformation rate during the middle and late of phase transformation.

Key words:  metallic materials      phase diagram and phase transformation      low-carbon steels      austenite ferrite phase transformation kinetics      rare-earth element     
Received:  23 February 2022     
ZTFLH:  TG142  
Fund: National Natural Science Foundation of China(52031013)
Corresponding Authors:  WANG Pei, Tel: (024)23970106, E-mail: pwang@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.109     OR     https://www.cjmr.org/EN/Y2023/V37/I7/495

SamplesCSiMnRE (La+Ce)OSPFe
Fe-C0.14--00.0008<0.00050.002Bal.
Fe-C-RE0.14--0.0290.0005<0.00050.003Bal.
Fe-C-Si-Mn0.180.251.6600.00040.0010.004Bal.
Fe-C-Si-Mn-RE0.190.251.640.0360.00050.0010.004Bal.
Table 1  Composition of the Fe-C-(RE) alloys and Fe-C-Si-Mn-(RE) alloys (%, mass fraction)
Fig.1  Original microstructures of investigated specimens (a) Fe-0.14%C, (b) Fe-0.14%C-RE, (c) Fe-C-Si-Mn, (d) Fe-C-Si-Mn-RE
Fig.2  Schematic diagrams of the heat treatment processing profile of continuous cooling (a) and the heat treatment processing profile of isothermal transformation(b)
Fig.3  Effects of RE solution on phase transition temperature (a) The experimentally measured dilatometric curves of Fe-C-(RE) steels with or without RE addition at a cooling rate of 1℃/s, (b) The experimentally measured dilatometric curves of low-carbon steels with or without RE addition at a cooling rate of 1℃/s
Fig.4  Isothermal transformation kinetics curves of Fe-C-(RE) alloy (a) and the relationship between the transformation rate and time (b)
Fig.5  Isothermal transformation kinetics curves of Fe-C-Si-Mn-(RE) alloy (a) and the relationship between the transformation rate and time (b)
Fig.6  Microstructure of Fe-C-Si-Mn sample after isothermal transformation for 10 min (a),Fe-C-Si-Mn-RE sample after isothermal transformation for 10 min (b),Fe-C-Si-Mn sample after isothermal transformation for 30 min (c) and Fe-C-Si-Mn-RE sample after isothermal transformation for 30 min (d)
1 Ma Q Q, Wu C C, Cheng G G, et al. Characteristic and formation mechanism of inclusions in 2205 duplex stainless steel containing rare earth elements [J]. Mater. Today., 2015, 2: 300
2 Liu C, Revilla R I, Liu Z, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel [J]. Corros. Sci., 2017, 129: 82
doi: 10.1016/j.corsci.2017.10.001
3 Yang C Y, Luan Y K, Li D Z, et al. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel [J]. J. Mater. Sci. Technol., 2019, 35(7): 1298
doi: 10.1016/j.jmst.2019.01.015
4 Jiang Z H, Wang P, Li D Z, et al. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels [J]. J. Mater. Sci. Technol., 2020, 45: 1
doi: 10.1016/j.jmst.2019.03.012
5 Gui W M, Liu Y, Zhang X T, et al. Effect of rare earth addition on microstructure, mechanical property and nitriding performance of a medium carbon steel [J]. Chin. J. Mater. RES., 2021, 35(1): 72
doi: 10.11901/1005.3093.2020.203
桂伟民, 刘 义, 张晓田 等. 稀土元素对中碳钢组织、力学性能和渗氮的影响 [J]. 材料研究学报, 2021, 35(1): 72
doi: 10.11901/1005.3093.2020.203
6 Wang Y J, Chen J G, Yang J, et al. Effect of La2O3 on granular bainite microstructure and wear resistance of hardfacing layer metal [J]. J. Rare Earths., 2014, 32(1): 83
doi: 10.1016/S1002-0721(14)60036-3
7 Pan F, Zhang J, Chen H L, et al. Effects of rare earth metals on steel microstructures [J]. Materials, 2017, 9(6): 1
doi: 10.3390/ma9010001
8 Adabavazeh Z, Hwang W S, Su Y H. Effect of adding cerium on microstructure and morphology of Ce-based inclusions formed in low-carbon steel [J]. Sci. Rep., 2017, 7: 46503
doi: 10.1038/srep46503 pmid: 28485376
9 Maloney J L, Garrison W M. The effect of sulfide type on the fracture behavior of HY180 steel [J]. Acta. Mater., 2005, 53(2): 533
doi: 10.1016/j.actamat.2004.09.041
10 Opiela M, Grajcar A. Modification of non-metallic inclusions by rare earth elements in micro-alloyed Steels [J]. Arch. Foundry Eng., 2012, 12(2): 129
11 Li D Z, Wang P, Chen X Q, et al. Low oxygen rare earth steels [J]. Nat. Mater. (under revise)
12 Liang Y L, Yi Y L, Long S L, et al. Effect of rare earth elements on isothermal transformation kinetics in Si-Mn-Mo bainite steels [J]. J. Mater. Eng. Perform., 2014, 23(12): 4251
doi: 10.1007/s11665-014-1181-7
13 Rees G I, Bhadeshia H K D H. Thermodynamics of acicular ferrite nucleation [J]. Mater. Sci. Technol., 1994, 10(5): 353
doi: 10.1179/mst.1994.10.5.353
14 Babu S S, Bhadeshia H K D H. Transition from bainite to acicular ferrite in reheated Fe-Cr-C weld deposits [J]. Mater. Sci. Technol., 1990, 6(10): 1005
doi: 10.1179/026708390790189605
15 Liu Z Q, Miyamoto G, Yang Z G, et al. Direct measurement of carbon enrichment during austenite to ferrite transformation in hypoeutectoid Fe-2Mn-C alloys [J]. Acta. Mater., 2013, 61(8): 3120
doi: 10.1016/j.actamat.2013.02.003
16 Zurob H S, Hutchinson C R, Bréchet Y, et al. Kinetic transitions during non-partitioned ferrite growth in Fe-C-X alloys [J]. Acta. Mater., 2009, 57(9): 2718
17 Zurob H S, Panahi D, Hutchinson C R, et al. Self-consistent model for planar ferrite growth in Fe-C-X alloys [J]. Metall. Mater. Trans. A., 2012, 44A(8) : 3456
18 Guo F, Wang P, Zheng C W, et al. Effect of rare-earth elements in solid solution on phase transformation in low-carbon steels [J]. Submitted Acta Metall. Sin., 2022
19 Lu W, Liu H, Xu Z Y, et al. Segregation of rare earth during isothermal transformation in low carbon steels [J]. Scripta Mater., 1993, 29(2): 273
doi: 10.1016/0956-716X(93)90321-I
20 Gao X Y, Ren H P, Li C L, et al. First-principles calculations of rare earth (Y, La and Ce) diffusivities in bcc Fe [J]. J. Alloys. Compd., 2016, 663: 316
doi: 10.1016/j.jallcom.2015.12.129
21 YAN H H, Hu Y, Zhao D W. The influence of rare earth elements on phase transformation in 25Mn steel during continuous heating [J]. Metall. Mater. Trans. A., 2018, 49A(11) : 5271
22 Agren J. A revised expression for the diffusivity of carbon in binary Fe-C austenite [J]. Scripta Mater., 1986, 20(11): 1507
23 Zener C. Theory of growth of spherical precipitates from solid solution [J]. J. Appl. Phys., 1949, 20(10): 950
doi: 10.1063/1.1698258
24 Torkamani H, Raygan S, Mateo C G, et al. The influence of La and Ce addition on inclusion modification in cast niobium micro-alloyed steels [J]. Metals, 2017, 7(9): 377
doi: 10.3390/met7090377
25 Chen L, Ma X C, Wang L M, et al. Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr-11Ni austenitic heat-resistant stainless steel [J]. Mater. Des., 2011, 32(4): 2206
doi: 10.1016/j.matdes.2010.11.022
26 Zhou F, Cao Y X, Wan X L. In-situ observation of effect of La on grain refinement in simulated coarse-grain heat-affected zone of high strength low alloy steel [J]. Chin. J. Mater. Res., 2021, 35(3):2 31
周 峰, 曹羽鑫, 万响亮. 原位观察稀土镧对低合金高强度钢焊接热影响区晶粒细化的影响 [J]. 材料研究学报, 2021, 35(3):231
27 Fang K M, Ni R M. Research on determination of the rare-earth content in metal phases of steel [J]. Metall. Mater. Trans. A., 1986, 17(2): 315
28 Xu Z Y. Effects of rare earth element on isothermal and martensitic transformations in low carbon steels [J]. ISIJ Int., 1998, 38(11): 1153
doi: 10.2355/isijinternational.38.1153
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
No Suggested Reading articles found!