|
|
Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels |
GUO Fei1,2, ZHENG Chengwu1,2, WANG Pei1,2(), LI Dianzhong1,2 |
1.Institute of Metal Research, Chinese Academy of Sciences; Shenyang National Laboratory for Materials Science, Shenyang, 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China |
|
Cite this article:
GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels. Chinese Journal of Materials Research, 2023, 37(7): 495-501.
|
Abstract With the increasing cleanliness of steels in recent years, it has made possible for making micro-alloyed steels with rare earth elements. It is found that the addition of rare earths has a significant effect on the solid-state phase transformation behavior of steels, especially for low-carbon low-alloy steels. The effectiveness in modifying the inclusions and inducing nucleation by RE addition has been studied intensively and approved substantially. Whereas, the micro-alloying effect of RE on the ferrite phase transformation of steel is still unclear. The effect of rare earth elements (RE) on austenite-ferrite transformation temperature during continuous cooling, and the isothermal transformation kinetics of Fe-C alloys and Fe-C-Si-Mn low carbon steels has been investigated in this article. It is found that a tiny amount of RE addition can reduce the starting point temperature of proeutectoid ferrite during continuous cooling. Additionally, the addition of RE also changes the ferrite transformation kinetics in the isothermal process: for Fe-C-(RE) alloys, the addition of RE slows down the transformation rate during the whole transformation process due to the pinning carbon diffusion effect; For Fe-C-Si-Mn alloys, RE elements can play a double role of pinning carbon diffusion and changing grain boundary energy, and then prolong the incubation period and decreases the rate of phase transformation during the initial stage, while increase the phase transformation rate during the middle and late of phase transformation.
|
Received: 23 February 2022
|
|
Fund: National Natural Science Foundation of China(52031013) |
Corresponding Authors:
WANG Pei, Tel: (024)23970106, E-mail: pwang@imr.ac.cn
|
1 |
Ma Q Q, Wu C C, Cheng G G, et al. Characteristic and formation mechanism of inclusions in 2205 duplex stainless steel containing rare earth elements [J]. Mater. Today., 2015, 2: 300
|
2 |
Liu C, Revilla R I, Liu Z, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel [J]. Corros. Sci., 2017, 129: 82
doi: 10.1016/j.corsci.2017.10.001
|
3 |
Yang C Y, Luan Y K, Li D Z, et al. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel [J]. J. Mater. Sci. Technol., 2019, 35(7): 1298
doi: 10.1016/j.jmst.2019.01.015
|
4 |
Jiang Z H, Wang P, Li D Z, et al. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels [J]. J. Mater. Sci. Technol., 2020, 45: 1
doi: 10.1016/j.jmst.2019.03.012
|
5 |
Gui W M, Liu Y, Zhang X T, et al. Effect of rare earth addition on microstructure, mechanical property and nitriding performance of a medium carbon steel [J]. Chin. J. Mater. RES., 2021, 35(1): 72
doi: 10.11901/1005.3093.2020.203
|
|
桂伟民, 刘 义, 张晓田 等. 稀土元素对中碳钢组织、力学性能和渗氮的影响 [J]. 材料研究学报, 2021, 35(1): 72
doi: 10.11901/1005.3093.2020.203
|
6 |
Wang Y J, Chen J G, Yang J, et al. Effect of La2O3 on granular bainite microstructure and wear resistance of hardfacing layer metal [J]. J. Rare Earths., 2014, 32(1): 83
doi: 10.1016/S1002-0721(14)60036-3
|
7 |
Pan F, Zhang J, Chen H L, et al. Effects of rare earth metals on steel microstructures [J]. Materials, 2017, 9(6): 1
doi: 10.3390/ma9010001
|
8 |
Adabavazeh Z, Hwang W S, Su Y H. Effect of adding cerium on microstructure and morphology of Ce-based inclusions formed in low-carbon steel [J]. Sci. Rep., 2017, 7: 46503
doi: 10.1038/srep46503
pmid: 28485376
|
9 |
Maloney J L, Garrison W M. The effect of sulfide type on the fracture behavior of HY180 steel [J]. Acta. Mater., 2005, 53(2): 533
doi: 10.1016/j.actamat.2004.09.041
|
10 |
Opiela M, Grajcar A. Modification of non-metallic inclusions by rare earth elements in micro-alloyed Steels [J]. Arch. Foundry Eng., 2012, 12(2): 129
|
11 |
Li D Z, Wang P, Chen X Q, et al. Low oxygen rare earth steels [J]. Nat. Mater. (under revise)
|
12 |
Liang Y L, Yi Y L, Long S L, et al. Effect of rare earth elements on isothermal transformation kinetics in Si-Mn-Mo bainite steels [J]. J. Mater. Eng. Perform., 2014, 23(12): 4251
doi: 10.1007/s11665-014-1181-7
|
13 |
Rees G I, Bhadeshia H K D H. Thermodynamics of acicular ferrite nucleation [J]. Mater. Sci. Technol., 1994, 10(5): 353
doi: 10.1179/mst.1994.10.5.353
|
14 |
Babu S S, Bhadeshia H K D H. Transition from bainite to acicular ferrite in reheated Fe-Cr-C weld deposits [J]. Mater. Sci. Technol., 1990, 6(10): 1005
doi: 10.1179/026708390790189605
|
15 |
Liu Z Q, Miyamoto G, Yang Z G, et al. Direct measurement of carbon enrichment during austenite to ferrite transformation in hypoeutectoid Fe-2Mn-C alloys [J]. Acta. Mater., 2013, 61(8): 3120
doi: 10.1016/j.actamat.2013.02.003
|
16 |
Zurob H S, Hutchinson C R, Bréchet Y, et al. Kinetic transitions during non-partitioned ferrite growth in Fe-C-X alloys [J]. Acta. Mater., 2009, 57(9): 2718
|
17 |
Zurob H S, Panahi D, Hutchinson C R, et al. Self-consistent model for planar ferrite growth in Fe-C-X alloys [J]. Metall. Mater. Trans. A., 2012, 44A(8) : 3456
|
18 |
Guo F, Wang P, Zheng C W, et al. Effect of rare-earth elements in solid solution on phase transformation in low-carbon steels [J]. Submitted Acta Metall. Sin., 2022
|
19 |
Lu W, Liu H, Xu Z Y, et al. Segregation of rare earth during isothermal transformation in low carbon steels [J]. Scripta Mater., 1993, 29(2): 273
doi: 10.1016/0956-716X(93)90321-I
|
20 |
Gao X Y, Ren H P, Li C L, et al. First-principles calculations of rare earth (Y, La and Ce) diffusivities in bcc Fe [J]. J. Alloys. Compd., 2016, 663: 316
doi: 10.1016/j.jallcom.2015.12.129
|
21 |
YAN H H, Hu Y, Zhao D W. The influence of rare earth elements on phase transformation in 25Mn steel during continuous heating [J]. Metall. Mater. Trans. A., 2018, 49A(11) : 5271
|
22 |
Agren J. A revised expression for the diffusivity of carbon in binary Fe-C austenite [J]. Scripta Mater., 1986, 20(11): 1507
|
23 |
Zener C. Theory of growth of spherical precipitates from solid solution [J]. J. Appl. Phys., 1949, 20(10): 950
doi: 10.1063/1.1698258
|
24 |
Torkamani H, Raygan S, Mateo C G, et al. The influence of La and Ce addition on inclusion modification in cast niobium micro-alloyed steels [J]. Metals, 2017, 7(9): 377
doi: 10.3390/met7090377
|
25 |
Chen L, Ma X C, Wang L M, et al. Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr-11Ni austenitic heat-resistant stainless steel [J]. Mater. Des., 2011, 32(4): 2206
doi: 10.1016/j.matdes.2010.11.022
|
26 |
Zhou F, Cao Y X, Wan X L. In-situ observation of effect of La on grain refinement in simulated coarse-grain heat-affected zone of high strength low alloy steel [J]. Chin. J. Mater. Res., 2021, 35(3):2 31
|
|
周 峰, 曹羽鑫, 万响亮. 原位观察稀土镧对低合金高强度钢焊接热影响区晶粒细化的影响 [J]. 材料研究学报, 2021, 35(3):231
|
27 |
Fang K M, Ni R M. Research on determination of the rare-earth content in metal phases of steel [J]. Metall. Mater. Trans. A., 1986, 17(2): 315
|
28 |
Xu Z Y. Effects of rare earth element on isothermal and martensitic transformations in low carbon steels [J]. ISIJ Int., 1998, 38(11): 1153
doi: 10.2355/isijinternational.38.1153
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|