Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (11): 868-874    DOI: 10.11901/1005.3093.2020.269
ARTICLES Current Issue | Archive | Adv Search |
Effect of Molybdenum Content on Microstructure and Corrosion Resistance of CoCrFeNiMo High Entropy Alloy
LIU Qian1(), WANG Xinyang1, HUANG Yanbin1, XIE Lu2, XU Quan3, LI Linhu1
1.Army Academy of Armored Forces, Equipment Support and Remanufacturing Department, Beijing 100072, China
2.University of Science & Technology Beijing, Institute of Mechanical Engineering, Beijing 100083, China
3.China Satellite Maritime Measurement and Control Department, Jiangyin 214431, China
Download:  HTML  PDF(5073KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High entropy alloys have been extensively paid attention in the coating industry due to their excellent mechanical properties and corrosion resistance. CoCrFeNiMox high-entropy alloy coatings were prepared on the surface of Q235 steel by laser cladding with synchronous powder feeding. The microstructure, microhardness and corrosion resistance of the coatings were studied. The corrosion mechanism of the alloys was analyzed and the strengthening mechanism of their corrosion resistance was revealed combined with the first-principle calculation. The results show that CoCrFeNiMo0.1 and CoCrFeNiMo0.2 are composed of the fcc phase. The fcc phase and tetragonal CrMo phase are both observed in the CoCrFeNiMo0.3 high-entropy alloy layer. The microstructure of the alloys is composed of dendrites. Cr and Mo elements are enriched in the interdendritic, and Co and Fe elements are enriched in the dendrites. CoCrFeNiMox high-entropy alloys have excellent comprehensive corrosion resistance in 3.5% (mass fraction) NaCl solution. As the content of Mo increases, the corrosion potential shifts to more positive potentials, the corrosion current density decreases, the length of polarization region increases, the impedance arc radius increases, and the electrode reaction resistance increases. It is found via the first-principle calculation that the higher corrosion resistance of the coating is related to its dense passivation film.

Key words:  metallic materials      corrosion resistance      first principle      high entropy alloy      laser cladding coating     
Received:  02 July 2020     
ZTFLH:  TG131  
Corresponding Authors:  LIU Qian     E-mail:  lq717460@163.con

Cite this article: 

LIU Qian, WANG Xinyang, HUANG Yanbin, XIE Lu, XU Quan, LI Linhu. Effect of Molybdenum Content on Microstructure and Corrosion Resistance of CoCrFeNiMo High Entropy Alloy. Chinese Journal of Materials Research, 2020, 34(11): 868-874.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.269     OR     https://www.cjmr.org/EN/Y2020/V34/I11/868

Fig.1  XRD patterns of CoCrFeNiMox high entropy alloy coatings
Fig.2  Microstructures of CoCrFeNiMoxlaser cladding coatings (a) Mo1, (b) Mo2, (c) Mo3
AlloyRegionCoCrFeNiMo
Mo1Interdendritic

22.50

(±0.14)

24.65

(±0.10)

23.30

(±0.24)

22.12

(±0.38)

7.43

(±0.13)

Dendrites

26.01

(±0.23)

22.77

(±0.12)

24.33

(±0.32)

26.25

(±0.24)

0.64

(±0.16)

Mo2Interdendritic

22.22

(±0.19)

23.78

(±0.27)

23.39

(±0.27)

22.58

(±0.13)

8.03

(±0.15)

Dendrites

25.86

(±0.28)

22.63

(±0.35)

24.14

(±0.46)

26.14

(±0.28)

1.23

(±0.18)

Mo3Interdendritic

22.13

(±0.22)

23.54

(±0.14)

23.30

(±0.36)

22.47

(±0.34)

8.56

(±0.24)

Dendrites

25.12

(±0.38)

21.90

(±0.35)

23.31

(±0.55)

25.22

(±0.29)

4.45

(±0.21)

Table 1  Element distributions in the different regions of CoCrFeNiMoxlaser cladding coatings (atomic fraction, %)
Fig.3  Polarization curves of CoCrFeNiMox high entropy alloy coatings in 3.5% NaCl solution.
AlloyIcorr /A·cm-2Ecorr /VE /V
Mo34.23×10-6-0.661.01
Mo25.01×10-6-0.680.86
Mo17.20×10-6-0.770.67
CoCrFeNiW[11]1.42×10-5-0.780.62
(CoCrFeNi)95Nb5[11]7.23×10-6-0.370.63
Table 2  Electrochemical parameters of three high-entropy alloy coatings
Fig.4  Impedance spectra of CoCrFeNiMox(x=0.1, 0.3) coatings in 3.5% NaCl solution (a) impedance spectrum of coatings; (b) impedance spectrum fitting of coatings; (c, d) Bode diagram of coatings
Fig.5  Equivalent circuit diagram of EIS of the high-entropy alloy coatings
AlloyRs/Ω·cm2Error/%Q/F·cm2Error/%Rct/Ω·cm2Error/%nError/%
Mo38.5693.671.33×10-52.4155497005.370.751.09
Mo17.8764.513.59×10-53.78449727.120.713.17
Table 3  Fitting parameters of EIS of two high-entropy alloy coatings
Position in passive filmAdsorption energy of Cl-Diffusion energy of Cl-
Interface of Cr2O3/MoO3Region a0.790.49
Region b0.370.26
Region c0.960.57
Interface of Cr2O3/Nb2O5Region a0.780.48
Region b0.230.18
Region c0.660.38
Table 4  Adsorption energy and diffusion energy of Cl- in the passive film formed on CoCrFeNiMo high-entropy alloy (eV)
1 Gaskell. Introduction to the Thermodynmics of Materials [M]. USA, Boca Raton: CRC Press, 2008
2 Cao L G, Zhu L, Zhang L L, et al. Microstructure evolution and mechanical properties of rapid solidified AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Chin. J. Mater. Res., 2019, 33: 650
曹雷刚, 朱琳, 张磊磊等. 快速凝固AlCoCrFeNi2.1共晶高熵合金的微观组织演变和力学性能 [J]. 材料研究学报, 2019, 33: 650
3 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
4 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
5 Liu N, Chen C, Chang I, et al. Compositional dependence of phase selection in coCrCu0.1FeMoNi-based high-entropy alloys [J]. Materials, 2018, 11: 1290
6 Gao N, Long Y, Peng H Y, et al. Microstructure and mechanical properties of TiVNbTa refractory high-entropy alloy prepared by powder metallurgy [J]. Chin. J. Mater. Res., 2019, 33: 572
高楠, 龙雁, 彭海燕等. 粉末冶金TiVNbTa难熔高熵合金的组织和力学性能 [J]. 材料研究学报, 2019, 33: 572
7 Liu W H, He J Y, Huang H L, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys [J]. Intermetallics, 2015, 60: 1
8 Wang Z H, Wang H, He D Y, et al. Microstructure characterization of CoCrCuFeNiMn high entropy alloys by plasma cladding [J]. Rare Met. Mater. Eng., 2015, 44: 644
王智慧, 王虎, 贺定勇等. 等离子熔覆CoCrCuFeNiMn高熵合金组织研究 [J]. 稀有金属材料与工程, 2015, 44: 644
9 Liu N, Zhu Z X, Jin Y X, et al. Research progress of laser cladding technology to prepare high-entropy alloy coatings [J]. Mater. Rev., 2014, 28(5): 133
刘宁, 朱智轩, 金云学等. 激光熔覆技术制备高熵合金涂层的研究进展 [J]. 材料导报, 2014, 28(5): 133
10 He F, Wang Z J, Wang J, et al. Abnormal γ″-ε phase transformation in the CoCrFeNiNb0.25 high entropy alloy [J]. Scripta Mater., 2018, 146: 281
11 Wang W R, Qi W, Xie L, et al. Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying [J]. Materials, 2019, 12: 694
12 Liu L, Qi J G, Wang B, et al. Microstructure and mechanical properties of CoCrFeNiVx high entropy alloys [J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 1130
刘亮, 齐锦刚, 王冰等. CoCrFeNiVx高熵合金的组织与力学性能 [J]. 特种铸造及有色合金, 2015, 35: 1130
13 Wang W R, Wang J Q, Yi H G, et al. Effect of molybdenum additives on corrosion behavior of (CoCrFeNi)100-xMox high-entropy alloys [J]. Entropy, 2018, 20: 908
14 Liu Q, Wang X Y, Huang Y B, et al. Research progress on high-entropy alloy design and computer simulation [J]. Mater. Rev., 2019, 33(): 392
刘谦, 王昕阳, 黄燕滨等. 高熵合金设计与计算机模拟方法的研究进展 [J]. 材料导报, 2019, 33(): 392
15 Shi D M, Wen B, Melnik R, et al. First-principles studies of Al-Ni intermetallic compounds [J]. J. Solid State Chem., 2009, 182: 2664
16 Wang L X. The first-principle studies on mechanical properties of AlFeCrCuX high entropy alloys [D]. Dalian: Dalian University of Technology, 2017
王兰馨. AlFeCrCuX高熵合金力学性能的第一性原理计算 [D]. 大连: 大连理工大学, 2017
17 Huang S, Li X Q, Huang H, et al. Mechanical performance of FeCrCoMnAlx high-entropy alloys from first-principle [J]. Mater. Chem. Phys., 2018, 210: 37
18 Nong Z S, Zhu J C, Yu H L, et al. First principles calculation of intermetallic compounds in FeTiCoNiVCrMnCuAl system high entropy alloy [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 1437
19 Shun T T, Chang L Y, Shiu M H. Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys [J]. Mater. Sci. Eng., 2012, 556A: 170
20 Wong S K, Shun T T, Chang C H, et al. Microstructures and properties of Al0.3CoCrFeNiMnx high-entropy alloys [J]. Mater. Chem. Phys., 2017, 210: 146
21 Wang Y F, Ma S G, Chen X H, et al. Optimizing mechanical properties of AlCoCrFeNiTix high-entropy alloys by tailoring microstructures [J]. Acta Metall. Sin. Eng. Lett., 2013, 26: 277
22 Chen Q S, Dong Y, Zhang J J, et al. Microstructure and properties of AlCoCrFeNiBx(x=0, 0.1, 0.25, 0.5, 0.75, 1.0) high entropy alloys [J]. Rare Met. Mater. Eng., 2017, 46: 651
陈秋实, 董勇, 张峻嘉等. AlCoCrFeNiBx(x=0, 0.1, 0.25, 0.5, 0.75, 1.0)高熵合金的微观结构与性能 [J]. 稀有金属材料与工程, 2017, 46: 651
23 Wang X Y, Liu Q, Huang Y B, et al. Effect of Ti content on the microstructure and corrosion resistance of CoCrFeNiTix high entropy alloys prepared by laser cladding [J]. Materials, 2020, 13(10): 2209
24 Xu Q, Huang Y B, Liu Q, et al. Characterization and corrosion resistance study of laser-clad (CoCrFeNi)95Nb5 high-entropy alloy coating [J]. Electroplat. Finish., 2019, 38: 536
许诠, 黄燕滨, 刘谦等. 激光熔覆法制备(CoCrFeNi)95Nb5高熵合金涂层的表征与耐蚀性研究 [J]. 电镀与涂饰, 2019, 38: 536
25 Zhang B. XPS and first-principles study on electrochemical corrosion behavior of sputtered Fe-Cr alloys nanocrystalline thin films [D]. Dalian: Dalian University of Technology, 2016
张滨. Fe-Cr合金溅射纳米晶薄膜腐蚀电化学行为的XPS及第一性原理计算的研究 [D]. 大连: 大连理工大学, 2016
26 An X L. The microstructure and properties of high entropy alloy TixFeCoCrWSi coating synthesised by laser cladding [D]. Guiyang: Guizhou University, 2015
安旭龙. 激光熔覆制备TixFeCoCrWSi高熵合金组织与性能研究 [D]. 贵阳: 贵州大学, 2015
27 Li Q H, Yue T M, Guo Z N, et al. Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process [J]. Metall. Mater. Trans., 2013, 44A: 1767
28 Lee C P, Chen Y Y, Hsu C Y, et al. The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx [J]. J. Electrochem. Soc., 2007, 154: C424
29 Shang C Y, Axinte E, Sun J, et al. CoCrFeNi (W1-xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering [J]. Mater. Des., 2017, 117: 193
30 Qiu X W, Liu C G. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding [J]. J. Alloys Compd., 2013, 553: 216
31 Jiang H, Jiang L, Li D X, et al. Effect of Niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys [J]. J. Mater. Sci. Technol., 2017, 33: 712
[1] LIU Chao, WEN Feng, CHEN Jiqiang, ZHAO Hongjin, LI Qilong, ZHOU Jianpeng. Effect of Sc and Zr Addition and Annealing Treatment on Mechanical Properties of As-cast Al-Si Alloy[J]. 材料研究学报, 2021, 35(2): 93-100.
[2] CHEN Lifei, LUO Yunrong, ZHANG Yingqian, LI Hui, LI Xiulan, LIAO Wenli. Effect of Pre-corrosion by Salt Spray on Extremely Low Cycle Fatigue Performance of HRB400E Seismic Steel Bar[J]. 材料研究学报, 2021, 35(2): 101-109.
[3] CHEN Yang, TU Jian, ZHANG Yanbin, TAN Li, YIN Ruisen, ZHOU Zhiming. Effect of Deformation and Annealing Process on Microstructural Evolution of Fe47Mn30Co10Cr10B3 High Entropy Alloy[J]. 材料研究学报, 2021, 35(2): 143-153.
[4] WANG Hao, ZHAO Hongfeng, KANG Jiashuang, ZHOU Yuanxiang, XIE Qingyun. Properties of ZnO Varistor Ceramics Co-doped with B2O3 and Al2O3[J]. 材料研究学报, 2021, 35(2): 110-114.
[5] ZHANG Chen, HAN Weihao, GONG Yumei, YU Yang, CAO Jincheng. Synthesis of Hollow Mesoporous SiO2 and Its Adsorption Performance of Cr[J]. 材料研究学报, 2021, 35(1): 45-52.
[6] ZHANG Ming, WANG Zhiyong, LUO Qin, DAI Zhengkun, LI Yesheng, WU Ziping. Highly Activated Carbon Nanotube Sponges Deposited with Sulfur for Lithium-sulfur Batteries[J]. 材料研究学报, 2021, 35(1): 65-71.
[7] DU Bangdeng, LIU Jun, WANG Xiaowan, WANG Wei, CHEN Demin. Effect of Heat Treatment on Microstructure and Al-water Reactivity of Al-Mg-Ga-In-Sn Alloys[J]. 材料研究学报, 2021, 35(1): 25-35.
[8] GUI Weimin, LIU Yi, ZHANG Xiaotian, HE Liangliang, WANG Ye, WANG Yuandong, HE Erkang, WANG Mengmeng. Effect of Rare Earth Addition on Microstructure, Mechanical Property and Nitriding Performance of a Medium Carbon Steel[J]. 材料研究学报, 2021, 35(1): 72-80.
[9] DUAN Yuanman, ZHU Lihui, WU Xiaochun, GU Bingfu. Effect of Deep Cryogenic Treatment Time on Red Hardness of M2 High Speed Steel[J]. 材料研究学报, 2021, 35(1): 17-24.
[10] WANG Wei, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Meng, ZHANG Xiaofeng, WANG Kuaishe. Hot Deformation Behavior of TC4 Ti-Alloy Prepared by Electron Beam Cold Hearth Melting[J]. 材料研究学报, 2020, 34(9): 665-673.
[11] CHEN Gang, LUO Xiaobing, CHAI Feng, YANG Caifu, ZHANG Zhengyan, YANG Zhigang. Effect of Double Quenching on Microstructure and Impact Toughness of a High Strength Low Alloy Steel[J]. 材料研究学报, 2020, 34(9): 705-711.
[12] WU Mengjiao, REN Zhaohui, TIAN He, HAN Gaorong. Ferroelectric Polarization Induced Oriented Attachment Growth of PbTiO3 Films and Grain Size Control[J]. 材料研究学报, 2020, 34(9): 650-658.
[13] CHENG Xiaonong, GUI Xiang, LUO Rui, XU Guifang, YUAN Zhizhong, ZHOU Yuseng, GAO Pei. Dynamic Recrystallization Behavior and Kinetics Model of a New Developed Austenitic Heat Resistant Steel CHDG-A[J]. 材料研究学报, 2020, 34(8): 611-620.
[14] LI Dongmei, TAN Liming, ZHAO Qing, XIE Hanxi, YU Peng, XIA Lei. Effect of Dy Addition on Glass-forming Ability and Mechanical Properties of Cu50Zr46Al4 Bulk Metallic Alloy[J]. 材料研究学报, 2020, 34(8): 605-610.
[15] SHI Yuanji, CHEN Xianbing, WU Xiujuan, WANG Hongjun, GUO Xunzhong, LI Junwan. Deformation Mechanism of Nanoscale Polycrystalline α-Silicon Carbide Based on Molecular Dynamics Simulation[J]. 材料研究学报, 2020, 34(8): 628-634.
No Suggested Reading articles found!