Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (11): 861-867    DOI: 10.11901/1005.3093.2020.167
ARTICLES Current Issue | Archive | Adv Search |
Massive Preparation and Supercapacitor Performance of Layered Ti3C2
YANG Zhanxin, WU Qiong(), REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao
School of Material Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
Cite this article: 

YANG Zhanxin, WU Qiong, REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao. Massive Preparation and Supercapacitor Performance of Layered Ti3C2. Chinese Journal of Materials Research, 2020, 34(11): 861-867.

Download:  HTML  PDF(9587KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The high-purity precursor material Ti3AlC2 was prepared via in situ sintering technology with mixed powders of titanium, aluminum, graphite and a small amount of tin as raw material by changing the ratio of powders and sintering time. Then the precursor material Ti3AlC2 was subjected to selective etching with concentrated hydrofluoric acid, and finally massive material of layered Ti3C2 with adjustable layer spacing was prepared by changing the etching time. The microstructure and microscopic morphology of the layer spacing of Ti3AlC2 and Ti3C2 were characterized by X-ray diffractometer and field emission scanning electron microscopy and their electrochemical performance was comparatively assessed. Among others, the specific capacity of the present prepared electrode under the same condition is greatly improved, showing good performance of supercapacitor.

Key words:  synthesizing and processing technics for materials      Ti3AlC2      Ti3C2      selective etching      specific capacity     
Received:  18 May 2020     
ZTFLH:  TQ152  
Fund: Basic Research Program of Liaoning Province Education Department(JQL201715404)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.167     OR     https://www.cjmr.org/EN/Y2020/V34/I11/861

Fig.1  Schematic diagram of preparation and electrochemical properties of Ti3C2 synthesized by selective etching of high purity Ti3AlC2
Fig.2  (a) X-ray diffraction patterns of 3Ti/1.2Al/1.9C samples obtained by sintering at different temperatures for 30 min; (b) X-ray diffraction patterns of 3Ti/1.2Al/1.9C sample obtained by sintering at 1400℃ for 30 min; (c) Mass percentage curve of Ti3AlC2 in 3Ti/1.2Al/1.9C obtained by sintering at different temperatures; (d) X-ray diffraction patterns of the precursor Ti3C2 obtained by different etching time
Fig.3  SEM photographs of Ti3C2 obtained by etching precursor Ti3AlC2 for different time (a) Ti3AlC2; (b) 6 h; (c) 12 h; (d) 18 h; (e) 24 h; (f) 30 h; (g) 36 h
Fig.4  CV curves of Ti3AlC2 and Ti3C2 electrodes prepared with different selective etching times at scanning speed 20 mV/s (a); CV curves of Ti3C2-24 h electrodes at different scanning speeds (b); GCD curves of Ti3AlC2 and Ti3C2 electrode under 1 A/g current density prepared at different etching times (c); GCD curves of Ti3C2-24 h electrode under different current density (d); EIS impedance spectra of the precursor material Ti3AlC2 electrode and the Ti3C2 electrode prepared at different etching times (e) and cycling performance of T3C2-24 h electrode (f)
1 Mehtab T, Yasin G, Arif M, et al. Metal-organic frameworks for energy storage devices: batteries and supercapacitors [J]. J. Energy Storage, 2019, 21: 632
2 John B. G. Energy storage materials: a perspective [J]. Energy Storage Mater., 2015, 1: 158
3 Pan S, Zhuang X, Wang B, et al. Preparation and properties of carbon coated manganese dioxide electrode materials [J]. J. Mater. Res., 2019, 7(33): 530
潘双, 庄雪, 王冰等. 碳包覆改性二氧化锰电极材料的制备和性能 [J]. 材料研究学报, 2019, 7(33): 530
4 Liang X, Yun J F, Xu K, et al. A multi-layered Ti3C2/Li2S composite as cathode material for advanced lithium-sulfur batteries [J]. J. Energ. Chem., 2019, 39: 176
5 Maria R, Lukatskaya, Olaha M, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide [J]. Science, 2013, 341(6153): 1502
6 Lukatskaya M R, Kota S, Lin Z F, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides [J]. Nat. Energy, 2017, 2: 1
7 Liu Y F, Du H F, Zhang X, et al. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride [J]. Chem. Commun., 2016, 52(4): 705
8 Wang F, Yang C H, Duan M, et al. TiO2 naonparticle modified origan-like Ti3C2 MXenes nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances [J]. Biosens. Bioeletron., 2015, 74: 1022
9 Guo J X, Peng Q M, Fu H, et al. Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXenes by first-principles [J]. J. Phys. Chem. C, 2015, 119(36): 20923
10 Sun D D, Wang M S, Li Z Y, et al. Two-dimensional Ti3C2 as anode material for li-ion batteries [J]. Electrochem. Commun., 2014, 47: 80
11 Shi Z Q, Lv G X. Prepartion and performance of electrochemical sodium storage of two-dimension Ti3C2Tx material [J]. Journal of Tianjin Polytechnic university, 2018, 37(6): 48
时志强, 吕国霞. 二维层状材料Ti3C2Tx的制备及其电化学储钠性能 [J]. 天津工业大学学报, 2018, 37(6): 48
12 Michael N, Jeremy C, Boris D, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries [J]. Electtochem. Commun., 2012, 16(1): 61
13 Zhu J F, Tang W, Lu X, et al. Modification and electrochemical performance of two-dimensional Ti3C2 (MXenes) nanomaterial [M]. Beijing: Tsinghua University Press, 2018: 15
朱建峰, 汤唯. 二维Ti3C2(MXenes)纳米材料的改性及电化学性能研究 [M]. 北京: 清华大学出版社, 2018: 15
14 Wang L B, Zhang H, Wang B, et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process [J]. Electron. Mater. Lett, 2016, 12(5): 702
15 Wu Q, Li C S, Tang H, et al. Synthesis and tribological properties of laminated Ti3SiC2 crystals [J]. Cryst. Res. Technol., 2010, 45(8): 851
16 Wang H H, Sun S C, Wang D Y, et al. Fabrication of TiB2-TiC multiphase ceramics via high energy ball milling and subsequent pressureless sintering [J]. J. Mater. Res., 2013, 5(27): 489
王慧华, 孙树臣, 王德永等. 高能球磨结合无压烧结制备TiB2-TiC复相陶瓷 [J]. 材料研究学报, 2013, 5(27): 489
17 Michael N, Murat K, Volker P, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Adv. Mater., 2011, 23: 4248
18 Liu F F, Zhou A G, Chen J F, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties [J]. Appl. Surf. Sci., 2017, 416: 781
19 Li T F, Yao L L, Gu J J, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment [J]. Angew. Chem., 2018, 57: 1
20 Liu Q B. Preparation of cathode materials for lithium-ion battery and its performance [D]. Guangdong: South China University of Technology, 2014
刘全兵. 离子电池在正极材料的制备及性能研究 [D]. 广东: 华南理工大学, 2014
21 Tang H, Feng Y, Huang X C, et al. Reactive synthesis of polycrystalline Ti3AlC2 and its sintering behavior [J]. Rare Metal Mat. Eng., 2017, 46(8): 2108
22 Zhou A G, Wang C A, Hunag Y, et al. Synthesis and mechanical properties of Ti3AlC2 by spark plasma sintering [J]. J. Mater. Sci., 2003, 38(14): 3111
23 Huang F, Siffalovic P, Li B, et al. Controlled crystallinity and morphologies of 2D ruddlesden-popper perovskite films grown without anti-solvent for solar cells [J]. Chem. Eng. J., 2020, 394: 1
24 Liu F F, Zhou A G, Wang L B, et al. Synthesis and characterization of two-dimensional carbide crystal Ti2C [J]. J. Synth. Cryst., 2015, 44(9): 2456
刘凡凡, 周爱国, 王李波等. 二维碳化物晶体Ti2C的制备与表征 [J]. 人工晶体学报, 2015, 44(9): 2456
25 Mohammadi A V, Mojtabavi M, Caffrey N M, et al. 2D MXenes: assembling 2D MXenes into highly stable pseudocapacitive electrodes with high power and energy densities [J]. Adv. Mater., 2019, 31(8): 180
26 Peng Y Y, Akuzum B, Kurra N, et al. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage [J]. Energy Environ. Sci., 2016, 9(9): 2847
27 Zhang X F, Guo Y, Li Y J, et al. Preparation and tribological properties of potassium titanate-Ti3C2Tx nanocomposites as additives in base oil. Chinese Chem. Lett., 2019, 30: 502
[1] LI Lingfang, YUAN Zhipeng, FAN Changling. Preparation of SnO2@Ti3C2Tx and Its Application in Lithium Ion Battery as Anode Material[J]. 材料研究学报, 2022, 36(8): 602-608.
[2] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[3] WANG Yihao, WU Qiong, LI Pengfei, YANG Zhanxin, ZHANG Hongtao. Preparation and Supercapacitor Performance of Few-Layered Ti3C2 with High Specific Capacitance[J]. 材料研究学报, 2022, 36(3): 183-190.
[4] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[5] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[6] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[7] MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. 材料研究学报, 2020, 34(3): 217-224.
[8] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
[9] Qiang WANG, Ruiting HAO, Qichen ZHAO, Sijia LIU. Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets[J]. 材料研究学报, 2018, 32(6): 409-414.
[10] Chen CHEN,Haibin ZHANG,Shuming PENG,Xinggui LONG,Jianguo ZHU. High-Temperature Hydrogenation Behavior of Titanium Aluminum Carbide[J]. 材料研究学报, 2014, 28(11): 858-864.
[11] SHEN Yinan CHEN Huahui HU Yu. The grain composition’s influence on the performance of the porous ceramic[J]. 材料研究学报, 2011, 25(5): 550-556.
No Suggested Reading articles found!