|
|
Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells |
WU Qiaofeng1, ZHANG Fu1, YU Yue1, ZHANG Meng1, YU Hua1( ), FAN Shuanshi2( ) |
1.Institute of Photovoltaics, Southwest Petroleum University, Chengdu 610500, China 2.Key Laboratory of Heat Transfer Enhancement and Energy Conservation of Education Ministry, South China University of Technology, Guangzhou 510640, China |
|
Cite this article:
WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells. Chinese Journal of Materials Research, 2020, 34(11): 811-821.
|
Abstract Inorganic perovskite materials have excellent thermal stability due to that the volatile organic components (MA+, FA+) in organic-inorganic hybrid perovskite materials are completely replaced by cesium ions (Cs+). Inorganic perovskite solar cells (IPSCs) are favored by researchers internationally due to their excellent thermal stability. Since the CsPbI2Br was used as the photoactive layer for the first time in 2016, its photoelectric conversion efficiency (PCE) increased from 9.84% to 18.06%, but the device stability of IPSCs still restricts its commercial application progress. This paper reviews the unstable factors of CsPbI2Br IPSCs and summarizes the recent research progress on the stability of CsPbI2Br IPSCs from three aspects: preparation methods, ion doping, and interface optimization. Finally, an outlook on the research challenges and prospects of CsPbI2Br based IPSCs was proposed and discussed.
|
Received: 11 May 2020
|
|
Fund: Scientific Research Starting the Project of SWPU(X151528) |
1 |
Chen Z, Dong Q, Liu Y, et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption [J]. Nat. Commun., 2017, 8(1): 1890
|
2 |
Wei H, Fang Y, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals [J]. Nat. Photonics, 2016, 10(5): 333
|
3 |
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber [J]. Science, 2013, 342(6156): 341
|
4 |
Wang Z K, Li M, Yang Y G, et al. High efficiency Pb-In binary metal perovskite solar cells [J]. Adv. Mater., 2016, 28(31): 6695
|
5 |
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovs-kites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050
|
6 |
Chen Y, Tan S, Li N, et al. Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics [J]. Joule, 2020. DOI:10.1016/j.joule.2020.07.006
|
7 |
Tai Q, Tang K C, Yan F. Recent progress of inorganic perovskite solar cells [J]. Energy Environ. Sci., 2019, 12(8): 2375
|
8 |
Liang J, Wang C, Wang Y, et al. All-inorganic perovskite solar cells [J]. J. Am. Chem. Soc., 2016, 138(49): 15829
|
9 |
Yang Z, Babu B H, Wu S, et al. Review on practical interface engineering of perovskite solar cells: From efficiency to stability [J]. Solar Rrl, DOI:10.1002/solr.201900257
|
10 |
Yang J, Siempelkamp B D, Liu D, et al. Investigation of CH3NH3-PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques [J]. ACS Nano, 2015, 9(2): 1955
|
11 |
Hoffman J B, Schleper A L, Kamat P V. Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3-xthrough halide exchange [J]. J. Am. Chem. Soc., 2016, 138(27): 8603
|
12 |
Sun J K, Huang S, Liu X Z, et al. Polar solvent induced lattice distortion of cubic CsPbI3 nanocubes and hierarchical self-assembly into orthorhombic single-crystalline nanowires [J]. J. Am. Chem. Soc., 2018, 140(37): 11705
|
13 |
Li B, Zhang Y, Fu L, et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells [J]. Nat. Commun., 2018, 9: 1
|
14 |
Yuan H, Zhao Y, Duan J, et al. All-inorganic CsPbBr3 perovskite solar cell with 10.26% efficiency by spectra engineering [J]. J. Mater. Chem. A, 2018, 6(47): 24324
|
15 |
Kang J, Wang L W. High defect tolerance in lead halide perovskite CsPbBr3 [J]. J. Phys. Chem. Lett., 2017, 8(2): 489
|
16 |
Stoumpos C C, Malliakas C D, Peters J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection [J]. Cryst. Growth Des., 2013, 13(7): 2722
|
17 |
Chang S, Bai Z, Zhong H. In situ fabricated perovskite nanocrystals: A revolution in optical materials [J]. Adv. Opt. Mater., 2018, 6(18): 1800380
|
18 |
Kulbak M, Cahen D, Hodes G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells [J]. J. Phys. Chem. Lett., 2015, 6(13): 2452
|
19 |
Sutton R J, Eperon G E, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells [J]. Adv. Energy Mater., 2016, 6(8): 1502458
|
20 |
Bai D, Bian H, Jin Z, et al. Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81% [J]. Nano Energy, 2018, 52:408
|
21 |
Beal R E, Slotcavage D J, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells [J]. J. Phys. Chem. Lett., 2016, 7(5): 746
|
22 |
Lin J, Lai M, Dou L, et al. Thermochromic halide perovskite solar cells [J]. Nat. Mater., 2018, 17(3): 261
|
23 |
Chen C Y, Lin H Y, Chiang K M, et al. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11% [J]. Adv. Mater., 2017, 29(12): 201605290
|
24 |
Yin G, Zhao H, Jiang H, et al. Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency [J]. Adv. Funct. Mater., 2018, 28(39): 1803269
|
25 |
Han Y, Zhao H, Duan C, et al. Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79% [J]. Adv. Funct. Mater., 2020, 30(12): 1909972
|
26 |
Zheng Y, Yang X, Su R, et al. High-performance CsPbIxBr3-x all-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation [J]. Adv. Funct. Mater., 2020, 2000457. DOI: 10.1002/adfm.202000457
|
27 |
Prakash J, Singh A, Sathiyan G, et al. Progress in tailoring perovs-kite based solar cells through compositional engineering: Materials properties, photovoltaic performance and critical issues [J]. Mater. Today Energy, 2018, 9:440
|
28 |
Ouedraogo N A, Chen Y, Xiao Y Y, et al. Stability of all-inorganic perovskite solar cells [J]. Nano Energy, 2020, 67:104249
|
29 |
Mariotti S, Hutter O S, Phillips L J, et al. Stability and performance of CsPbI2Br thin films and solar cell devices [J]. ACS Appl. Mater. Interfaces, 2018, 10(4): 3750
|
30 |
Edoardo M, Jon M A, Filippo D A. Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water [J]. Chem. Mater., 2015, 27(13): 4885
|
31 |
Yang J, Siempelkamp B D, Liu D, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques [J]. ACS Nano, 2015, 9(2): 1955
|
32 |
Imler G H, Li X, Xu B, et al. Solid state transformation of the crystalline monohydrate (CH3NH3)PbI3(H2O) to the (CH3NH3)PbI3 per-ovskite [J]. Chem. Commun. (Camb), 2015, 51(56): 11290
|
33 |
Vincent B R, Robertson K N, Cameron T S, et al. Alkylammonium lead halides. Part 1. Isolated PbI64- ions in (CH3NH3)4PbI6·2H2O [J]. Canadian Journal of Chemistry, 1987, 65(5): 1042
|
34 |
Halder A, Choudhury D, Ghosh S, et al. Exploring thermochromic behavior of hydrated hybrid perovskites in solar cells [J]. J. Phys. Chem. Lett., 2015, 6(16): 3180
|
35 |
Eperon G E, Paterno G M, Sutton R J, et al. Inorganic caesium lead iodide perovskite solar cells [J]. J. Mater. Chem. A, 2015, 3(39): 19688
|
36 |
Xu L, Yuan S, Zeng H, et al. A comprehensive review of doping in perovskite nanocrystals/quantum dots: Evolution of structure, electronics, optics, and light-emitting diodes [J]. Mater. Today Nano, 2019, 6: 100036
|
37 |
Zhou Y, Zhao Y. Chemical stability and instability of inorganic halide perovskites [J]. Energy Environ. Sci., 2019, 12(5): 1495
|
38 |
Ju M G, Chen M, Zhou Y, et al. Toward eco-friendly and stable perovskite materials for photovoltaics [J]. Joule, 2018, 2(7): 1231
|
39 |
Berhe T A, Su W N, Chen C H, et al. Organometal halide perovs-kite solar cells: Degradation and stability [J]. Energy Environ. Sci., 2016, 9(2): 323
|
40 |
Zeng Q, Zhang X, Liu C, et al. Inorganic CsPbI2Br perovskite solar cells: The progress and perspective [J]. Solar Rrl, 2019, 3(1): 201800239
|
41 |
Wang R, Mujahid M, Duan Y, et al. A review of perovskites solar cell stability [J]. Adv. Funct. Mater., 2019, 29(47): 1808843
|
42 |
Xue J, Gu Y, Shan Q, et al. Constructing mie-scattering porous interface-fused perovskite films to synergistically boost light harvesting and carrier transport [J]. Angew. Chem., Int. Ed., 2017, 56(19): 5232
|
43 |
Roose B, Wang Q, Abate A. The role of charge selective contacts in perovskite solar cell stability [J]. Adv. Energy Mater., 2019, 9(5): 1803140
|
44 |
Chang C Y, Chu C Y, Huang Y C, et al. Tuning perovskite morphology by polymer additive for high efficiency solar cell [J]. ACS Appl. Mater. Interfaces, 2015, 7(8): 4955
|
45 |
Wakamiya A, Endo M, Sasamori T, et al. Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 layers [J]. Chem. Lett., 2014, 43(5): 711
|
46 |
Rong Y, Tang Z, Zhao Y, et al. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells [J]. Nanoscale, 2015, 7(24): 10595
|
47 |
Chen J, Xiong Y, Rong Y, et al. Solvent effect on the hole-conductor-free fully printable perovskite solar cells [J]. Nano Energy, 2016, 27:130
|
48 |
Zai H, Zhang D, Li L, et al. Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport [J]. J. Mater. Chem. A, 2018, 6(46): 23602
|
49 |
Rong Y, Venkatesan S, Guo R, et al. Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient pero-vskite solar cells [J]. Nanoscale, 2016, 8(26): 12892
|
50 |
Shi L, Hao H, Dong J, et al. Solvent engineering for intermediates phase, all-ambient-air-processed in organic-inorganic hybrid pero-vskite solar cells [J]. Nanomaterials, 2019, 9(7): 915
|
51 |
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells [J]. Nat. Mater., 2014, 13(9): 897
|
52 |
Yin M, Xie F, Chen H, et al. Annealing-free perovskite films by instant crystallization for efficient solar cells [J]. J. Mater. Chem. A, 2016, 4(22): 8548
|
53 |
Yu Y, Yang S, Lei L, et al. Ultrasmooth perovskite film via mixed anti-solvent strategy with improved efficiency [J]. ACS Appl. Mater. Interfaces, 2017, 9(4): 3667
|
54 |
Rao H, Ye S, Gu F, et al. Morphology controlling of all-inorganic perovskite at low temperature for efficient rigid and flexible solar cells [J]. Adv. Energy Mater., 2018, 8(23): 1800758
|
55 |
Kim M, Kim G H, Oh K S, et al. High-temperature-short-time annealing process for high-performance large-area perovskite solar cells [J]. ACS Nano, 2017, 11(6): 6057
|
56 |
Huang L, Hu Z, Xu J, et al. Multi-step slow annealing perovskite films for high performance planar perovskite solar cells [J]. Sol. Energy Mater. Sol. Cells, 2015, 141:377
|
57 |
Nam J K, Jung M S, Chai S U, et al. Unveiling the crystal formation of cesium lead mixed-halide perovskites for efficient and stable solar cells [J]. J. Phys. Chem. Lett., 2017, 8(13): 2936
|
58 |
Chen W, Chen H, Xu G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells [J]. Joule, 2019, 3(1): 191
|
59 |
Chen C Y, Lin H Y, Chiang K M, et al. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11% [J]. Adv. Mater., 2017, 29(12): 2936
|
60 |
Kong R, Kim J E, Yeo J S, et al. Optimized organometal halide perovskite planar hybrid solar cells via control of solvent evaporation rate [J]. J. Phys. Chem. C, 2014, 118(46): 26513
|
61 |
Hsu H L, Chen C P, Chang J Y, et al. Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics [J]. Nanoscale, 2014, 6(17): 10281
|
62 |
Li M H, Liu S C, Qiu F Z, et al. High-efficiency CsPbI2Br perovs-kite solar cells with dopant-free poly(3-hexylthiophene) hole transporting layers [J]. Adv. Energy Mater., 2020, 10(21): 2000501
|
63 |
Sanchez S, Hua X, Phung N, et al. Flash infrared annealing for antisolvent-free highly efficient perovskite solar cells [J]. Adv. Energy Mater., 2018, 8(12): 1702915
|
64 |
Chen Q, Ma T, Wang F, et al. Rapid microwave-annealing process of hybrid perovskites to eliminate miscellaneous phase for high performance photovoltaics [J]. Adv. Sci., DOI:10.1002/advs.202000480
|
65 |
Wang P, Wu Y, Cai B, et al. Solution-processable perovskite solar cells toward commercialization: Progress and challenges [J]. Adv. Funct. Mater., 2019, 29(47): 1807661
|
66 |
Cheng Z, Lin J. Layered organic-inorganic hybrid perovskites: Structure, optical properties, film preparation, patterning and templating engineering [J]. Crystengcomm, 2010, 12(10): 2646
|
67 |
Li C, Soh K C K, Wu P. Formability of ABO3 perovskites [J]. Journal of Alloys and Compounds, 2004, 372(1): 40
|
68 |
Li C, Lu X, Ding W, et al. Formability of ABX3 (X=F, Cl, Br, I) halide perovskites [J]. Acta Crystallogr. B, 2008, 64(Pt6): 702
|
69 |
Green M A, Ho Baillie A, Snaith H J. The emergence of perovskite solar cells [J]. Nat. Photonics, 2014, 8(7): 506
|
70 |
Zhang W, Eperon G E, Snaith H J. Metal halide perovskites for energy applications [J]. Nature Energy, 2016, 1(6): 16048
|
71 |
Zhou Y, Chen J, Bakr O M, et al. Metal-doped lead halide per-ovskites: Synthesis, properties, and optoelectronic applications [J]. Chem. Mater., 2018, 30(19): 6589
|
72 |
Nam J K, Chai S U, Cha W, et al. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells [J]. Nano Letters, 2017, 17(3): 2028
|
73 |
Kang D H, Park N G. On the current-voltage hysteresis in per-ovskite solar cells: Dependence on perovskite composition and methods to remove hysteresis [J]. Adv. Mater., 2019, 31(34): 1805214
|
74 |
Song D H, Jang M H, Lee M H, et al. A discussion on the origin and solutions of hysteresis in perovskite hybrid solar cells [J]. J. Phys. D: Appl. Phys., 2016, 49(47): 473001
|
75 |
Patil J V, Mali S S, Hong C K. A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells exceeding 17% efficiency [J]. Solar RRL, 2020, DOI:10.1002/solr.202000164
|
76 |
Yang F, Hirotani D, Kapil G, et al. All-inorganic CsPb1-xGexI2Br perovskite with enhanced phase stability and photovoltaic performance [J]. Angew. Chem., Int. Ed., 2018, 57(39): 12745
|
77 |
Guo Z, Zhao S, Liu A, et al. Niobium incorporation into CsPbI2Br for stable and efficient all-inorganic perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2019, 11(22): 19994
|
78 |
Xiang W, Wang Z, Kubicki D J, et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells [J]. Joule, 2019, 3(1): 205
|
79 |
Liu C, Li W, Li H, et al. Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells [J]. Adv. Energy Mater., 2019, 9(7): 205
|
80 |
Bai D, Zhang J, Jin Z, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells [J]. ACS Energy Lett., 2018, 3(4): 970
|
81 |
Wang K L, Wang R, Wang Z K, et al. Tailored phase transformation of CsPbI2Br films by copper(II) bromide for high-performance all-inorganic perovskite solar cells [J]. Nano Lett., 2019, 19(8): 5176
|
82 |
Sun H, Zhang J, Gan X, et al. Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells [J]. Adv. Energy Mater., 2019, 9(25): 1900896
|
83 |
Wang T, Abbasi S, Wang X, et al. Hierarchy of interfacial passivation in inverted perovskite solar cells [J]. Chem. Commun., 2019, 55(99): 14996
|
84 |
Yang S, Chen S, Mosconi E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts [J]. Science, 2019, 365(6452): 473
|
85 |
Liu R, Zheng Z, Spurgeon J, et al. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers [J]. Energy Environ. Sci., 2014, 7(8): 2504
|
86 |
Mahmud M A, The D, Yin Y, et al. Double-sided surface passivation of 3D perovskite film for high-efficiency mixed-dimensional perovskite solar cells [J]. Adv. Funct. Mater., 2019, 30(7): 1907962
|
87 |
Wang T, Cheng Z, Zhou Y, et al. Highly efficient and stable perovskite solar cells via bilateral passivation layers [J]. J.Mater. Chem. A, 2019, 7(38): 21730
|
88 |
Jiang Q, Zhao Y, Zhang X, et al. Surface passivation of perovskite film for efficient solar cells [J]. Nat. Photonics, 2019, 13(7): 460
|
89 |
Zhou L, Guo X, Lin Z, et al. Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward pce exceeding 14% [J]. Nano Energy, 2019, 60: 583
|
90 |
Fu L, Nie Y, Li B, et al. Bismuth telluride interlayer for all-inorganic perovskite solar cells with enhanced efficiency and stability [J]. Solar Rrl, 2019, 3(12): 1900233
|
91 |
Zhao H, Yang S, Han Y, et al. A high mobility conjugated polymer enables air and thermally stable CsPbI2Br perovskite solar cells with an efficiency exceeding 15% [J]. Adv. Mater. Technol., 2019, 4(9): 1900311
|
92 |
Chen S, Zhang S, Zheng Q. A facile surface passivation method for efficient inorganic CsPbI2Br perovskite solar cells with efficiencies over 15% [J]. Sci. China Mater., 2020, 63(5): 719
|
93 |
Liu X M, Li Y H, Wang X T, et al. Organic ammonium salt surface treatment stabilizing all-inorganic CsPbI2Br perovskite [J]. Acta Physica Sinica, 2019, 68(15): 158805
|
|
刘晓敏, 李亦回, 王兴涛等. 有机铵盐表面稳定化CsPbI2Br全无机钙钛矿 [J]. 物理学报, 2019, 68(15): 158805
|
94 |
Liu Y H, Akin S, Pan L F, et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22% [J]. Sci. Adv., 2019, 5(6): eaaw2543
|
95 |
Li J, Yu Q, He Y, et al. Cs2PbI2Cl2, All-inorganic two-dimensional ruddlesden-popper mixed halide perovskite with optoelectronic response [J]. J. Am. Chem. Soc., 2018, 140(35): 11085
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|