Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (11): 811-821    DOI: 10.11901/1005.3093.2020.158
ARTICLES Current Issue | Archive | Adv Search |
Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells
WU Qiaofeng1, ZHANG Fu1, YU Yue1, ZHANG Meng1, YU Hua1(), FAN Shuanshi2()
1.Institute of Photovoltaics, Southwest Petroleum University, Chengdu 610500, China
2.Key Laboratory of Heat Transfer Enhancement and Energy Conservation of Education Ministry, South China University of Technology, Guangzhou 510640, China
Cite this article: 

WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells. Chinese Journal of Materials Research, 2020, 34(11): 811-821.

Download:  HTML  PDF(8877KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Inorganic perovskite materials have excellent thermal stability due to that the volatile organic components (MA+, FA+) in organic-inorganic hybrid perovskite materials are completely replaced by cesium ions (Cs+). Inorganic perovskite solar cells (IPSCs) are favored by researchers internationally due to their excellent thermal stability. Since the CsPbI2Br was used as the photoactive layer for the first time in 2016, its photoelectric conversion efficiency (PCE) increased from 9.84% to 18.06%, but the device stability of IPSCs still restricts its commercial application progress. This paper reviews the unstable factors of CsPbI2Br IPSCs and summarizes the recent research progress on the stability of CsPbI2Br IPSCs from three aspects: preparation methods, ion doping, and interface optimization. Finally, an outlook on the research challenges and prospects of CsPbI2Br based IPSCs was proposed and discussed.

Key words:  review      inorganic nonmetallic materials      inorganic perovskite solar cells      stability      CsPbI2Br     
Received:  11 May 2020     
ZTFLH:  TM 914.4  
Fund: Scientific Research Starting the Project of SWPU(X151528)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.158     OR     https://www.cjmr.org/EN/Y2020/V34/I11/811

Fig.1  Evolution of CsPbI2Br perovskite solar cell energy conversion efficiencies
Fig.2  Mechanism of the moisture-triggered phase transition in inorganic perovskites (a) the moisture induce perovskite to form vacancies, (b) vacancies enter the lattice and cause perovskite to triggered phase transition [22]
Fig.3  Molecular structure and properties of solvents commonly used in perovskite precursors[47] (a), schematic of the evolution of the CsPbI2Br film with the introduction of DMSO[48] (b), SEM images of CsPbI2Br films annealed at the temperature range from 100 to 350℃ for 2 min. Scale bar: 1 μm[57] (c) and schematic illustration of CsPbI2Br perovskite crystallization process via GTA or GTA-ATS processing[58] (d)
Fig.4  Schematic diagram of a typical three-dimensional perovskite crystal structure[65] (a), SEM images of undoped CsPbI2Br (A) and CsPb0.95Eu0.05I2Br perovskite films (B)[78] (b) and schematic diagram of device structure and two modes of Mn2 + doped in the gap and replacing Pb2+[80] (c)
Fig.5  Schematic architecture of CsPbI2Br planar IPSCs inserted into MoO3 interface layer[89] (a), SEM images of a) CsPbI2Br/BT1, b) CsPbI2Br/BT2 and c) CsPbI2Br/BT3 films[90] (b) and process of synthesis 2D/3D perovskite by SIM method[26] (c)
1 Chen Z, Dong Q, Liu Y, et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption [J]. Nat. Commun., 2017, 8(1): 1890
2 Wei H, Fang Y, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals [J]. Nat. Photonics, 2016, 10(5): 333
3 Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber [J]. Science, 2013, 342(6156): 341
4 Wang Z K, Li M, Yang Y G, et al. High efficiency Pb-In binary metal perovskite solar cells [J]. Adv. Mater., 2016, 28(31): 6695
5 Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovs-kites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050
6 Chen Y, Tan S, Li N, et al. Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics [J]. Joule, 2020. DOI:10.1016/j.joule.2020.07.006
7 Tai Q, Tang K C, Yan F. Recent progress of inorganic perovskite solar cells [J]. Energy Environ. Sci., 2019, 12(8): 2375
8 Liang J, Wang C, Wang Y, et al. All-inorganic perovskite solar cells [J]. J. Am. Chem. Soc., 2016, 138(49): 15829
9 Yang Z, Babu B H, Wu S, et al. Review on practical interface engineering of perovskite solar cells: From efficiency to stability [J]. Solar Rrl, DOI:10.1002/solr.201900257
10 Yang J, Siempelkamp B D, Liu D, et al. Investigation of CH3NH3-PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques [J]. ACS Nano, 2015, 9(2): 1955
11 Hoffman J B, Schleper A L, Kamat P V. Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3-xthrough halide exchange [J]. J. Am. Chem. Soc., 2016, 138(27): 8603
12 Sun J K, Huang S, Liu X Z, et al. Polar solvent induced lattice distortion of cubic CsPbI3 nanocubes and hierarchical self-assembly into orthorhombic single-crystalline nanowires [J]. J. Am. Chem. Soc., 2018, 140(37): 11705
13 Li B, Zhang Y, Fu L, et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells [J]. Nat. Commun., 2018, 9: 1
14 Yuan H, Zhao Y, Duan J, et al. All-inorganic CsPbBr3 perovskite solar cell with 10.26% efficiency by spectra engineering [J]. J. Mater. Chem. A, 2018, 6(47): 24324
15 Kang J, Wang L W. High defect tolerance in lead halide perovskite CsPbBr3 [J]. J. Phys. Chem. Lett., 2017, 8(2): 489
16 Stoumpos C C, Malliakas C D, Peters J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection [J]. Cryst. Growth Des., 2013, 13(7): 2722
17 Chang S, Bai Z, Zhong H. In situ fabricated perovskite nanocrystals: A revolution in optical materials [J]. Adv. Opt. Mater., 2018, 6(18): 1800380
18 Kulbak M, Cahen D, Hodes G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells [J]. J. Phys. Chem. Lett., 2015, 6(13): 2452
19 Sutton R J, Eperon G E, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells [J]. Adv. Energy Mater., 2016, 6(8): 1502458
20 Bai D, Bian H, Jin Z, et al. Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81% [J]. Nano Energy, 2018, 52:408
21 Beal R E, Slotcavage D J, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells [J]. J. Phys. Chem. Lett., 2016, 7(5): 746
22 Lin J, Lai M, Dou L, et al. Thermochromic halide perovskite solar cells [J]. Nat. Mater., 2018, 17(3): 261
23 Chen C Y, Lin H Y, Chiang K M, et al. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11% [J]. Adv. Mater., 2017, 29(12): 201605290
24 Yin G, Zhao H, Jiang H, et al. Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency [J]. Adv. Funct. Mater., 2018, 28(39): 1803269
25 Han Y, Zhao H, Duan C, et al. Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79% [J]. Adv. Funct. Mater., 2020, 30(12): 1909972
26 Zheng Y, Yang X, Su R, et al. High-performance CsPbIxBr3-x all-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation [J]. Adv. Funct. Mater., 2020, 2000457. DOI: 10.1002/adfm.202000457
27 Prakash J, Singh A, Sathiyan G, et al. Progress in tailoring perovs-kite based solar cells through compositional engineering: Materials properties, photovoltaic performance and critical issues [J]. Mater. Today Energy, 2018, 9:440
28 Ouedraogo N A, Chen Y, Xiao Y Y, et al. Stability of all-inorganic perovskite solar cells [J]. Nano Energy, 2020, 67:104249
29 Mariotti S, Hutter O S, Phillips L J, et al. Stability and performance of CsPbI2Br thin films and solar cell devices [J]. ACS Appl. Mater. Interfaces, 2018, 10(4): 3750
30 Edoardo M, Jon M A, Filippo D A. Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water [J]. Chem. Mater., 2015, 27(13): 4885
31 Yang J, Siempelkamp B D, Liu D, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques [J]. ACS Nano, 2015, 9(2): 1955
32 Imler G H, Li X, Xu B, et al. Solid state transformation of the crystalline monohydrate (CH3NH3)PbI3(H2O) to the (CH3NH3)PbI3 per-ovskite [J]. Chem. Commun. (Camb), 2015, 51(56): 11290
33 Vincent B R, Robertson K N, Cameron T S, et al. Alkylammonium lead halides. Part 1. Isolated PbI64- ions in (CH3NH3)4PbI6·2H2O [J]. Canadian Journal of Chemistry, 1987, 65(5): 1042
34 Halder A, Choudhury D, Ghosh S, et al. Exploring thermochromic behavior of hydrated hybrid perovskites in solar cells [J]. J. Phys. Chem. Lett., 2015, 6(16): 3180
35 Eperon G E, Paterno G M, Sutton R J, et al. Inorganic caesium lead iodide perovskite solar cells [J]. J. Mater. Chem. A, 2015, 3(39): 19688
36 Xu L, Yuan S, Zeng H, et al. A comprehensive review of doping in perovskite nanocrystals/quantum dots: Evolution of structure, electronics, optics, and light-emitting diodes [J]. Mater. Today Nano, 2019, 6: 100036
37 Zhou Y, Zhao Y. Chemical stability and instability of inorganic halide perovskites [J]. Energy Environ. Sci., 2019, 12(5): 1495
38 Ju M G, Chen M, Zhou Y, et al. Toward eco-friendly and stable perovskite materials for photovoltaics [J]. Joule, 2018, 2(7): 1231
39 Berhe T A, Su W N, Chen C H, et al. Organometal halide perovs-kite solar cells: Degradation and stability [J]. Energy Environ. Sci., 2016, 9(2): 323
40 Zeng Q, Zhang X, Liu C, et al. Inorganic CsPbI2Br perovskite solar cells: The progress and perspective [J]. Solar Rrl, 2019, 3(1): 201800239
41 Wang R, Mujahid M, Duan Y, et al. A review of perovskites solar cell stability [J]. Adv. Funct. Mater., 2019, 29(47): 1808843
42 Xue J, Gu Y, Shan Q, et al. Constructing mie-scattering porous interface-fused perovskite films to synergistically boost light harvesting and carrier transport [J]. Angew. Chem., Int. Ed., 2017, 56(19): 5232
43 Roose B, Wang Q, Abate A. The role of charge selective contacts in perovskite solar cell stability [J]. Adv. Energy Mater., 2019, 9(5): 1803140
44 Chang C Y, Chu C Y, Huang Y C, et al. Tuning perovskite morphology by polymer additive for high efficiency solar cell [J]. ACS Appl. Mater. Interfaces, 2015, 7(8): 4955
45 Wakamiya A, Endo M, Sasamori T, et al. Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 layers [J]. Chem. Lett., 2014, 43(5): 711
46 Rong Y, Tang Z, Zhao Y, et al. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells [J]. Nanoscale, 2015, 7(24): 10595
47 Chen J, Xiong Y, Rong Y, et al. Solvent effect on the hole-conductor-free fully printable perovskite solar cells [J]. Nano Energy, 2016, 27:130
48 Zai H, Zhang D, Li L, et al. Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport [J]. J. Mater. Chem. A, 2018, 6(46): 23602
49 Rong Y, Venkatesan S, Guo R, et al. Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient pero-vskite solar cells [J]. Nanoscale, 2016, 8(26): 12892
50 Shi L, Hao H, Dong J, et al. Solvent engineering for intermediates phase, all-ambient-air-processed in organic-inorganic hybrid pero-vskite solar cells [J]. Nanomaterials, 2019, 9(7): 915
51 Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells [J]. Nat. Mater., 2014, 13(9): 897
52 Yin M, Xie F, Chen H, et al. Annealing-free perovskite films by instant crystallization for efficient solar cells [J]. J. Mater. Chem. A, 2016, 4(22): 8548
53 Yu Y, Yang S, Lei L, et al. Ultrasmooth perovskite film via mixed anti-solvent strategy with improved efficiency [J]. ACS Appl. Mater. Interfaces, 2017, 9(4): 3667
54 Rao H, Ye S, Gu F, et al. Morphology controlling of all-inorganic perovskite at low temperature for efficient rigid and flexible solar cells [J]. Adv. Energy Mater., 2018, 8(23): 1800758
55 Kim M, Kim G H, Oh K S, et al. High-temperature-short-time annealing process for high-performance large-area perovskite solar cells [J]. ACS Nano, 2017, 11(6): 6057
56 Huang L, Hu Z, Xu J, et al. Multi-step slow annealing perovskite films for high performance planar perovskite solar cells [J]. Sol. Energy Mater. Sol. Cells, 2015, 141:377
57 Nam J K, Jung M S, Chai S U, et al. Unveiling the crystal formation of cesium lead mixed-halide perovskites for efficient and stable solar cells [J]. J. Phys. Chem. Lett., 2017, 8(13): 2936
58 Chen W, Chen H, Xu G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells [J]. Joule, 2019, 3(1): 191
59 Chen C Y, Lin H Y, Chiang K M, et al. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11% [J]. Adv. Mater., 2017, 29(12): 2936
60 Kong R, Kim J E, Yeo J S, et al. Optimized organometal halide perovskite planar hybrid solar cells via control of solvent evaporation rate [J]. J. Phys. Chem. C, 2014, 118(46): 26513
61 Hsu H L, Chen C P, Chang J Y, et al. Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics [J]. Nanoscale, 2014, 6(17): 10281
62 Li M H, Liu S C, Qiu F Z, et al. High-efficiency CsPbI2Br perovs-kite solar cells with dopant-free poly(3-hexylthiophene) hole transporting layers [J]. Adv. Energy Mater., 2020, 10(21): 2000501
63 Sanchez S, Hua X, Phung N, et al. Flash infrared annealing for antisolvent-free highly efficient perovskite solar cells [J]. Adv. Energy Mater., 2018, 8(12): 1702915
64 Chen Q, Ma T, Wang F, et al. Rapid microwave-annealing process of hybrid perovskites to eliminate miscellaneous phase for high performance photovoltaics [J]. Adv. Sci., DOI:10.1002/advs.202000480
65 Wang P, Wu Y, Cai B, et al. Solution-processable perovskite solar cells toward commercialization: Progress and challenges [J]. Adv. Funct. Mater., 2019, 29(47): 1807661
66 Cheng Z, Lin J. Layered organic-inorganic hybrid perovskites: Structure, optical properties, film preparation, patterning and templating engineering [J]. Crystengcomm, 2010, 12(10): 2646
67 Li C, Soh K C K, Wu P. Formability of ABO3 perovskites [J]. Journal of Alloys and Compounds, 2004, 372(1): 40
68 Li C, Lu X, Ding W, et al. Formability of ABX3 (X=F, Cl, Br, I) halide perovskites [J]. Acta Crystallogr. B, 2008, 64(Pt6): 702
69 Green M A, Ho Baillie A, Snaith H J. The emergence of perovskite solar cells [J]. Nat. Photonics, 2014, 8(7): 506
70 Zhang W, Eperon G E, Snaith H J. Metal halide perovskites for energy applications [J]. Nature Energy, 2016, 1(6): 16048
71 Zhou Y, Chen J, Bakr O M, et al. Metal-doped lead halide per-ovskites: Synthesis, properties, and optoelectronic applications [J]. Chem. Mater., 2018, 30(19): 6589
72 Nam J K, Chai S U, Cha W, et al. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells [J]. Nano Letters, 2017, 17(3): 2028
73 Kang D H, Park N G. On the current-voltage hysteresis in per-ovskite solar cells: Dependence on perovskite composition and methods to remove hysteresis [J]. Adv. Mater., 2019, 31(34): 1805214
74 Song D H, Jang M H, Lee M H, et al. A discussion on the origin and solutions of hysteresis in perovskite hybrid solar cells [J]. J. Phys. D: Appl. Phys., 2016, 49(47): 473001
75 Patil J V, Mali S S, Hong C K. A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells exceeding 17% efficiency [J]. Solar RRL, 2020, DOI:10.1002/solr.202000164
76 Yang F, Hirotani D, Kapil G, et al. All-inorganic CsPb1-xGexI2Br perovskite with enhanced phase stability and photovoltaic performance [J]. Angew. Chem., Int. Ed., 2018, 57(39): 12745
77 Guo Z, Zhao S, Liu A, et al. Niobium incorporation into CsPbI2Br for stable and efficient all-inorganic perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2019, 11(22): 19994
78 Xiang W, Wang Z, Kubicki D J, et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells [J]. Joule, 2019, 3(1): 205
79 Liu C, Li W, Li H, et al. Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells [J]. Adv. Energy Mater., 2019, 9(7): 205
80 Bai D, Zhang J, Jin Z, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells [J]. ACS Energy Lett., 2018, 3(4): 970
81 Wang K L, Wang R, Wang Z K, et al. Tailored phase transformation of CsPbI2Br films by copper(II) bromide for high-performance all-inorganic perovskite solar cells [J]. Nano Lett., 2019, 19(8): 5176
82 Sun H, Zhang J, Gan X, et al. Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells [J]. Adv. Energy Mater., 2019, 9(25): 1900896
83 Wang T, Abbasi S, Wang X, et al. Hierarchy of interfacial passivation in inverted perovskite solar cells [J]. Chem. Commun., 2019, 55(99): 14996
84 Yang S, Chen S, Mosconi E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts [J]. Science, 2019, 365(6452): 473
85 Liu R, Zheng Z, Spurgeon J, et al. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers [J]. Energy Environ. Sci., 2014, 7(8): 2504
86 Mahmud M A, The D, Yin Y, et al. Double-sided surface passivation of 3D perovskite film for high-efficiency mixed-dimensional perovskite solar cells [J]. Adv. Funct. Mater., 2019, 30(7): 1907962
87 Wang T, Cheng Z, Zhou Y, et al. Highly efficient and stable perovskite solar cells via bilateral passivation layers [J]. J.Mater. Chem. A, 2019, 7(38): 21730
88 Jiang Q, Zhao Y, Zhang X, et al. Surface passivation of perovskite film for efficient solar cells [J]. Nat. Photonics, 2019, 13(7): 460
89 Zhou L, Guo X, Lin Z, et al. Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward pce exceeding 14% [J]. Nano Energy, 2019, 60: 583
90 Fu L, Nie Y, Li B, et al. Bismuth telluride interlayer for all-inorganic perovskite solar cells with enhanced efficiency and stability [J]. Solar Rrl, 2019, 3(12): 1900233
91 Zhao H, Yang S, Han Y, et al. A high mobility conjugated polymer enables air and thermally stable CsPbI2Br perovskite solar cells with an efficiency exceeding 15% [J]. Adv. Mater. Technol., 2019, 4(9): 1900311
92 Chen S, Zhang S, Zheng Q. A facile surface passivation method for efficient inorganic CsPbI2Br perovskite solar cells with efficiencies over 15% [J]. Sci. China Mater., 2020, 63(5): 719
93 Liu X M, Li Y H, Wang X T, et al. Organic ammonium salt surface treatment stabilizing all-inorganic CsPbI2Br perovskite [J]. Acta Physica Sinica, 2019, 68(15): 158805
刘晓敏, 李亦回, 王兴涛等. 有机铵盐表面稳定化CsPbI2Br全无机钙钛矿 [J]. 物理学报, 2019, 68(15): 158805
94 Liu Y H, Akin S, Pan L F, et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22% [J]. Sci. Adv., 2019, 5(6): eaaw2543
95 Li J, Yu Q, He Y, et al. Cs2PbI2Cl2, All-inorganic two-dimensional ruddlesden-popper mixed halide perovskite with optoelectronic response [J]. J. Am. Chem. Soc., 2018, 140(35): 11085
[1] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[4] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[5] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[6] HE Ying, LI Chaoqun, CHEN Xiaoli, LONG Zhimei, LAI Jiaqi, SHAO Bin, MA Yilong, CHEN Dengming, DONG Jiling. Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties[J]. 材料研究学报, 2022, 36(5): 321-331.
[7] ZHANG Shuqi, DONG Dandan, WAN Peng, WANG Qing, DONG Chuang, YANG Rui. Composition Design of Alumina-Forming Austenitic Stainless Steels Based on Cluster-Plus-Glue-Atom Model[J]. 材料研究学报, 2022, 36(5): 353-364.
[8] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[9] SHAO Siwu, ZHENG Yuting, AN Kang, HUANG Yabo, CHEN Liangxian, LIU Jinlong, WEI Junjun, LI Chengming. Progress on Application of Bias Technology for Preparation of Diamond Films[J]. 材料研究学报, 2022, 36(3): 161-174.
[10] OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. 材料研究学报, 2022, 36(2): 152-160.
[11] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[12] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[13] ZHAO Ning, JIAO Da, ZHU Yankun, LIU Dexue, LIU Zengqian, ZHANG Zhefeng. Material Science Mechanism for Efficient Protection of Natural Armor[J]. 材料研究学报, 2022, 36(1): 1-7.
[14] FENG Kai, L Guangzhe, L Bin. Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders[J]. 材料研究学报, 2021, 35(8): 591-596.
[15] SONG Xiaolong, LUO Weijing, NAN Yanli. A Review for Synthesis and Applications of Carbon Nanohorns[J]. 材料研究学报, 2021, 35(6): 401-410.
No Suggested Reading articles found!