Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (11): 822-828    DOI: 10.11901/1005.3093.2020.148
ARTICLES Current Issue | Archive | Adv Search |
Effect of Electron-beam Radiation on Properties of Oriented Poly (ether-ether-ketone)
DING Renhao1,3, CAO Dan2, XU Lu1, WANG Ziqiang1, LI Jianxi2, MA Hongjuan1()
1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.CGN -DELTA (Taicang) Testing Technology Co. , Ltd. , Suzhou 215400, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article: 

DING Renhao, CAO Dan, XU Lu, WANG Ziqiang, LI Jianxi, MA Hongjuan. Effect of Electron-beam Radiation on Properties of Oriented Poly (ether-ether-ketone). Chinese Journal of Materials Research, 2020, 34(11): 822-828.

Download:  HTML  PDF(4338KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of electron-beam (EB) radiation on the properties of oriented PEEK sheets in air at room temperature were investigated herein. While the effect of different absorbed doses of EB on the crystallinity, thermal stability, mechanical properties and thermal shrinkage properties of PEEK sheets in the direction of stress (parallel direction) and perpendicular to the direction of stress (vertical direction) was assessed by means of X-ray diffractometer (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and a universal tension machine. The results show that the crystallization temperature, melting enthalpy and crystallinity of the samples decreased with the increasing absorbed doses within the designed absorbed dose range. The thermal stability of the samples decreased with the increasing absorbed doses. The tensile stress and elongation at break in the parallel and vertical directions of the irradiated samples in air decreased with the increasing absorbed doses. The thermal shrinkage ratio of the samples after irradiation in the parallel direction was twice as high as that in the vertical direction, and was constant in these two directions under different absorbed doses.

Key words:  organic polymer materials      poly(ether-ether-ketone)      radiation aging      thermal stability      crystallization behavior     
Received:  03 May 2020     
ZTFLH:  TL13  
Fund: National Natural Science Foundation of China(U1732151)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.148     OR     https://www.cjmr.org/EN/Y2020/V34/I11/822

Fig.1  Oriented conditions of PEEK sheets before and after stretching treatment (a) two dimensional small angle X-ray scattering (2D-SAXS) chart of non-oriented samples; (b) 2D-SAXS chart of ori-ented samples; (c) 2D-SAXS curves of samples
Fig.2  XRD spectrum of oriented PEEK sheets irradiated at different dose (a) horizontal direction; (b) vertical direction
Fig.3  TG curves (a) and DTG curves (b) of oriented PEEK sheets irradiated at different dose
SamplesT5%/℃T10%/℃TP /℃RM/%
PEEK/0 kGy568.0575.3586.147.2
PEEK/500 kGy567.9575.2585.949.5
PEEK/1000 kGy567.5574.3584.650.3
PEEK/1500 kGy566.8574.2584.351.6
PEEK/2000 kGy566.1573.4582.654.0
Table 1  TGA data of PEEK samples irradiated at different dose
Fig.4  DSC curves of oriented PEEK sheets irradiated at different dose (a) heating curves; (b) cooling curves
SamplesTg/℃Tonset/℃Tpeak/℃Tc/℃H/J/gXC/%
PEEK/0 kGy149.5322.5337.8290.642.032.3
PEEK/500 kGy149.5322.1337.1290.438.129.3
PEEK/1000 kGy148.9321.7336.3290.036.828.3
PEEK/1500 kGy149.7320.6336.1289.136.528.1
PEEK/2000 kGy149.5320.1335.5288.336.127.8
Table 2  DSC data of PEEK samples irradiated at different dose
Fig.5  Elongation at break (a) and tensile stress (b) of oriented PEEK sheets irradiated at different dose
Fig.6  Schematic diagram of crystal stretching of PEEK sheets in the process of orientation
Fig.7  Change of heat shrinkage ratio of oriented PEEK sheets irradiated at different dose
1 Duan X Y. Application progress of special engineering plastics PEEK [J]. New. Chem. Mater., 2013, 41(05): 183
段翔远. 特种工程塑料聚醚醚酮应用进展 [J]. 化工新型材料, 2013, 41(05): 183
2 Zhang H, Fang L C, Chen Q H, et al. Application of PEEK in aerospace industry [J]. New Technology & New Process, 2018, 10: 5
张辉, 方良超, 陈奇海等. 聚醚醚酮在航空航天领域的应用 [J]. 新技术新工艺, 2018, 10: 5
3 Liu Z, Wang L, Hou X, et al. Investigation on dielectrical and space charge characteristics of PEEK insulation used in aerospace high-voltage system [J]. IEEJ Trans. Electr. Electron. Eng., 2020, 15(2): 172
4 Wang F Z, Jiang S Y, Zheng H, et al. Constructional design of class 1E cables for nuclear power station and investigation of related tests [J]. Electric Wire & Cable, 2006, 6: 14
王福志, 姜松奕, 郑红等. 核电站用1E级电缆结构设计及有关试验的探讨 [J]. 电线电缆, 2006, 6: 14
5 Zheng H, Wu X Y, Li Y M, et al. Remaining life prediction of class 1E cables by probabilistic reliability analysis [J]. Nucl. Sci. Eng., 2016, 36(03): 387
郑会, 乌晓燕, 李玉鸣等. 1E级电缆概率可靠性剩余寿命预测方法 [J]. 核科学与工程, 2016, 36(03): 387
6 Tan H R. Investigation on radiation effects of poly(ether ether ketone) under complicated conditions [D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics, Chinese Academy of Sciences), 2019
谭海容. 复杂条件下聚醚醚酮的辐照效应研究 [D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2019
7 Shi M, Gong Y, Xu J F, et al. Study on radiation aging properties and mechanism of PEEK special plastics [A]. Proceedings of 2015 National Failure Analysis Conference [C]. Beijing, 2015
时淼, 龚嶷, 徐剑峰等. PEEK特种塑料的辐照老化性能与机理研究 [A]. 2015年全国失效分析学术会议论文集 [C]. 北京, 2015
8 Zuo W, Xu D L, Bao M, et al. Extrusion process of PEEK insulated wire [J]. Optical Fiber & Electric Cable and Their Applications, 2012, 3: 36
左卫, 许德玲, 包明等. PEEK绝缘电线的挤出工艺 [J]. 光纤与电缆及其应用技术, 2012, 3: 36
9 Chen C Y, Zhang C, Zhao Z Q, et al. Effect of fiber reinforcement and fabrication process on the dynamic compressive behavior of PEEK composites [J]. Int. J. Mech. Sci., 2019, 155: 170
10 RodriguezCabello J C, Alonso M, Merino J C, et al. Scanning electron microscopy and differential scanning calorimetry study of the transition front in uniaxially stretched isotactic polypropylene [J]. J. Appl. Polym. Sci., 1996, 60(10): 1709
11 Liao T, Jiang Z Y, Li R, et al. Stretching temperature dependence of the critical strain in the tensile deformation of polyethylene copolymer [J]. Eur. Polym. J., 2017, 97: 188
12 Yoda O. The radiation effect on non-crystalline poly(aryl-ether-ketone) as revealed by X-ray diffraction and thermal analysis [J]. Polym. Commun., 1984, 25(8): 238
13 Yoda O. The crystallite size and lattice distortions in the chain direction of irradiated poly(aryl-ether-ketone) [J]. Polym. Commun., 1985, 26(1): 16
14 Woo E M, Tseng Y C. Glass transition and miscibility in blends of two semicrystalline polymers: Poly (aryl ether ketone) and poly(ether ether ketone) [J]. J. Polym Sci., Part B: Polym. Phys., 2015, 37(13): 1485
15 Goyal R K, Negi Y S, Tiwari A N. High performance polymer composites on PEEK reinforced with aluminum oxide [J]. J. Appl. Polym. Sci., 2006, 100(6): 4623
16 Mylläri V, Ruoko T P, Jarvela P. The effects of UV irradiation to polyetheretherketone fibres-Characterization by different techniques [J]. Polym. Degrad. Stab., 2014, 109: 278
17 Richaud E, Ferreira P, Audouin L, et al. Radiochemical ageing of poly(ether ether ketone) [J]. Eur. Polym. J., 2010, 46(4): 731
18 Wei C L, Chen M, Yu F E. Temperature modulated DSC and DSC studies on the origin of double melting peaks in poly(ether ether ketone) [J]. Polym., 2003, 44(26): 8185
19 Sasuga T, Kudoh H. Ion irradiation effects on thermal and mechanical properties of poly(ether-ether-ketone) (PEEK) [J]. Polym., 2000, 41(1): 185
20 Khare N, Limaye P K, Soni N L, et al. Gamma irradiation effects on thermal, physical and tribological properties of PEEK under water lubricated conditions [J]. Wear, 2015, 342: 85
[1] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[2] ZHU Xuedong, ZHANG Shuang, ZOU Cunlei, LIU Lingen, ZHU Zhihao, WAN Peng, DONG Chuang. Optimization Design of a Bulk Metallic Glass Zr55Cu30Al10Ni5 and its Crystallization Behavior[J]. 材料研究学报, 2023, 37(4): 281-290.
[3] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[4] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[5] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[6] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[14] XU Chunping, CHEN chunyue, ZHANG yonghang, Gong wei, BAN daming. Flame Retard Modification of Vinyl Ester Resin with Phosphorous Polymer Type Flame Retardant[J]. 材料研究学报, 2021, 35(11): 843-849.
[15] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
No Suggested Reading articles found!