Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (2): 152-160    DOI: 10.11901/1005.3093.2020.495
ARTICLES Current Issue | Archive | Adv Search |
Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction
OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan()
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
Cite this article: 

OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction. Chinese Journal of Materials Research, 2022, 36(2): 152-160.

Download:  HTML  PDF(7757KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Open hollow microsphere carbon nitride with nitrogen defects (OHCNs) were synthesized by means of direct thermal polymerization-etching method with mesoporous SiO2 spheres as templates and dicyandiamide as raw materials. The resulted OHCNs present a hemispherical structure with large specific surface area and open porosity. The size of OHCNs can be replicated from the SiO2 templates. The presence of the local 'thermal etching' during the process favors the formation of open hollow microspheres, at the same time, makes the generation of lots of nitrogen defects and abundant surface amino groups. The appropriate proportion of raw materials is beneficial to optimizing the physical-chemical properties of the products, such as the enhanced transient photoelectric response and accelerated photo-generated carrier transport. Furthermore, the existence of nitrogen defects broadens the visible light absorption range of the products. OHCNs-1 (the mass ratio of dicyandiamide to SiO2 template is 1∶1) demonstrates significantly enhanced photocatalytic activity. Under visible light irradiation the photocatalytic water splitting for hydrogen production and photocatalytic reduction of CO2 to produce CO on OHCNs-1 reach 45.9 and 47.3 μmol·h-1, which is 4.4 times and 4.0 times of the products prepared without SiO2 template, respectively. Furthermore, OHCNs-1 can maintain stable hydrogen production activity in simulated sewage environment, whilst degrade part of the environmental pollutants simultaneously.

Key words:  inorganic nonmetallic materials      carbon nitride      hard template method      photolysis water      open hollow microsphere     
Received:  20 November 2020     
ZTFLH:  O649  
Fund: Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX20-3152)
About author:  CUI Yanjuan, Tel: 15052918736, E-mail: yjcui@just.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.495     OR     https://www.cjmr.org/EN/Y2022/V36/I2/152

Fig.1  An illustration of the OHCNs synthetic strategy
Fig.2  XRD patterns of samples
Fig.3  SEM images of CN and OHCNs-1 (a~c), TEM images of Silicon oxide template, OHCNs-1 and OHCNs-3 (e~f)
Fig.4  N2 adsorption-desorptionisotherms (a) and NLDFT pore-size distribution (b) of samples
Fig.5  XPS spectra of CN and OHCNs-1 (a) XPS survey spectra, (b) spetra of C 1s, (c) spetra of N 1s and (d) an illustration of N defects in OHCNs-1
SpeciesCNOHCNs-1
CC-C/C=C9.0423.1
C-O1.983.4
C-N-H88.9873.5
NC-N=C73.066.7
N-(C)322.98.6
C-N-H4.124.7
Table 1  Different content of C and N elements in CN and OHCNs-1 ( atomic fraction, %)
Fig.6  UV-Vis diffuse reflectance spectra (a) and band gap values of samples (b)
Fig.7  Steady-state photoluminescence emission spectra (a), EIS (b) and photocurrent spectra (c) of samples
Fig.8  Photocatalytic H2 production (a), stability test (b) and photocatalytic reduction CO2 performances (c) of samples
SamplesTemplate

BET

/m2·g-1

ProductYieldIncreased activity timesRef.
PCNMMelamine sponge78H229.0 (μmol/h)2.8[24]
C3N4-MCFMCF70CH40.05 (μmol/g)2.5[25]
CNRsAAO25O27 (μmol/h)2[26]
GPPCNCaCO336.1Photocurrent42.9 (μA/cm2)4.2[27]
OHCNs-1Silicon oxide61H245.9 (μmol/h)4.5This paper
Table 2  Synthesis of porous carbon nitride by hard template and comparison of photocatalytic hydrogen production performance
Fig.9  H2 production rate of samles in seawater (a), antibiotic solution (b) and dye solution (c)
SolutionUp-waterMBMGRBTHCHCH
H2 evolution/μmol45.923.043.6123.645.345.247.2
Degradation rate/%-95.185.6034.528.40
Table 3  H2 production and degradation rate of pollutants on OHCNs-1 in simulated wastewater
1 Chen X B , Shen S H , Guo L J , et al . Semiconductor-based photocatalytic hydrogen generation [J]. Chem. Rev., 2010, 110: 6503
2 Liu X , Inagaki S , Gong J L . Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation [J]. Angew. Chem. Int. Ed., 2016, 55: 14924
3 Wang C L , Sun Z X , Zheng Y , et al . Recent progress in visible light photocatalytic conversion of carbon dioxide [J]. J. Mater. Chem., 2019, 7A: 865
4 Zheng Y , Lin L H , Wang B , et al . Graphitic carbon nitride polymers toward sustainable photoredox catalysis [J]. Angew. Chem. Int. Ed., 2015, 54: 12868
5 Wang X C , Blechert S , Antonietti M . Polymeric graphitic carbon nitride for heterogeneous photocatalysis [J]. ACS Catal., 2012, 2: 1596
6 Tong Z W , Yang D , Sun Y Y , et al . Tubular G-C3N4 isotype heterojunction: enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer [J]. Small, 2016, 12: 4093
7 Ye S , Wang R , Wu M Z , et al . A review on g-C3N4 for photocatalytic water splitting and CO2 reduction [J]. Appl. Surf. Sci., 2015, 358: 15
8 Dong G H , Yang L P , Wang F , et al . Removal of nitric oxide through visible light photocatalysis by g-C3N4 modified with perylene imides [J]. ACS Catal., 2016, 6: 6511
9 Ling F L , Li W J , Ye L J . The synergistic effect of non-metal doping or defect engineering and interface coupling on the photocatalytic property of g-C3N4: first-principle investigations [J]. Appl. Surf. Sci., 2019, 473: 386
10 Naseri A , Samadi M , Pourjavadi A , et al . Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions [J]. J. Mater. Chem., 2017, 5A: 23406
11 Zhu J J , Xiao P , Li H L , et al . Graphitic carbon nitride: synthesis, properties, and applications in catalysis [J]. ACS Appl. Mater. Interfaces, 2014, 6: 16449
12 Lei J Y , Wang L Z , Zhang J L . Superbright multifluorescent core-shell mesoporous nanospheres as trackable transport carrier for drug [J]. ACS Nano, 2011, 5: 3447
13 Lei J Y , Wang L Z , Zhang J L . Ratiometric pH sensor based on mesoporous silicananoparticles and förster resonance energy transfer [J]. Chem. Commun., 2010, 46: 8445
14 Xiao S Y , Xu G , Chen G , et al . Intramolecular cyclization of N-phenylanthranilic acid catalyzed by MCM-41 with different pore diameters [J]. Res. Chem. Intermed., 2015, 41: 10125
15 Fellinger T P , Hasché F , Strasser P , et al . Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide [J]. J. Am. Chem. Soc., 2012, 134: 4072
16 Wang H W , Hu Z A . Chang Y Q,et al. Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors [J]. J. Mater. Chem., 2011, 21: 10504
17 Thomas A , Fischer A , Goettmann F , et al . Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts [J]. J. Mater. Chem., 2008, 18: 4893
18 Luo L , Zhang A F , Janik M J , et al . Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation [J]. Appl. Surf. Sci., 2017, 396: 78
19 Zhang L S , Ding N , Wu J H , et al . New two-dimensional porous graphitic carbon nitride nanosheets for highly efficient photocatalytic hydrogen evolution under visible-light irradiation [J]. Catal. Sci. Technol., 2018, 8: 3846
20 Xia Y , Mokaya R . Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method [J]. Adv. Mater., 2004, 16: 1553
21 Zheng D D , Pang C Y , Liu Y X , et al . Shell-engineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution [J]. Chem. Commun., 2015, 51: 9706
22 Yu H J , Shi R , Zhao, Y X, et al . Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution [J]. Adv. Mater., 2017, 29: 1605148
23 Bai B C , Cho S , Yu H R , et al . Effects of aminated carbon molecular sieves on breakthrough curve behavior in CO2/CH4 separation [J]. J. Ind. Eng. Chem., 2013, 19: 776
24 Liang Q H , Li Z , Yu X L , et al . Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution [J]. Adv. Mater., 2015, 27: 4634
25 Ovcharov M , Shcherban N , Filonenko S , et al . Hard template synthesis of porous carbon nitride materials with improved efficiency for photocatalytic CO2 utilization [J]. Mater. Sci. Eng., 2015, 202B: 1
26 Li X H , Zhang J S , Chen X F , et al . Condensed graphitic carbon nitride nanorods by nanoconfinement: promotion of crystallinity on photocatalytic conversion [J]. Chem. Mater., 2011, 23: 4344
27 Wang J H , Zhang C , Shen Y F , et al . Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity[J]. J. Mater. Chem., 2015, 3A: 5126
28 Lu S , Chen Z W , Li C , et al . Adjustable electronic performances and redox ability of a g-C3N4 monolayer by adsorbing nonmetal solute ions: a first principles study [J]. J. Mater. Chem., 2016, 4A: 14827
29 Ma H Z , Feng J , Jin F , et al . Where do photogenerated holes at the g-C3N4/water interface go for water splitting: H2O or OH-? [J]. Nanoscale, 2018, 10: 15624
30 Yang C W , Qin J Q , Rajendran S , et al . WS2 and C-TiO2 nanorods acting as effective charge separators on g-C3N4 to boost visible-light activated hydrogen production from seawater [J]. ChemSusChem, 2018, 11: 4077
31 Makita M , Harata A . Photocatalytic decolorization of rhodamine B dye as a model of dissolved organic compounds: Influence of dissolved inorganic chloride salts in seawater of the Sea of Japan [J]. Chem. Eng. Process., 2008, 47: 859
32 Chen W , Chang L , Ren S B , et al . Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal [J]. J. Hazard. Mater., 2020, 384: 121308
33 Zhu Y X , Cui Y J , Xiao B B , et al . Z-scheme 2D/2D g-C3N4/Sn3O4 heterojunction for enhanced visible-light photocatalytic H2 evolution and gradation of ciprofloxacin [J]. Mat. Sci. Semicon. Proc., 2021, 129: 105767
34 Wu D Y , Li J Z , Guan J R , et al . Improved photoelectric performance via fabricated heterojunction g-C3N4/TiO2/HNTs loaded photocatalysts for photodegradation of ciprofloxacin [J]. J. Ind. Eng. Chem., 2018, 64: 206
[1] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[2] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[3] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[4] FENG Kai, L Guangzhe, L Bin. Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders[J]. 材料研究学报, 2021, 35(8): 591-596.
[5] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[6] ZHU Xiaoyu, QIU Hongfang, CHEN Ping. Preparation and Electromagnetic Wave Absorbing Properties of Composites of Cobalt Coated Graphitic Carbon Nitride Co@CNTs[J]. 材料研究学报, 2021, 35(11): 811-819.
[7] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[8] ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao. Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries[J]. 材料研究学报, 2020, 34(3): 191-197.
[9] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
[10] TANG Yang. Band Gap Energy and Near Band Edge Emission Blue Shifts of ZnO Nanorods Prepared by Electrodeposition[J]. 材料研究学报, 2020, 34(11): 875-880.
[11] Li YANG,Zhiyuan TANG,Tengteng LI,Qiwei DUAN,Jiali HU,Sufang ZHANG,Zhaoqiang ZHENG. Preparation and Photovoltaic Performance of Novel Ruthenium Complex and Its Self-assembly Membrane[J]. 材料研究学报, 2019, 33(8): 614-620.
[12] Yongjie CUI,Yong LIU,Shuai PENG,Keqing HAN,Muhuo YU. Preparation and Property of SiBN Ternary Ceramic Fibers Prepared by Polyborosilazane-Derived Method[J]. 材料研究学报, 2019, 33(2): 155-160.
[13] Hongxia JING, Mingxing GAO, Xingmei WANG, Wangjun PEI, Weizhou JIAO. Preparation and Properties of Ce-doped Cobalt Ferrite[J]. 材料研究学报, 2018, 32(6): 449-454.
[14] Aijun LI, Xiuyun CHUAN, Dubin HUANG, Xi CAO. KOH Activation of Diatomite-templated Carbon and Its Electrochemical Property in Supercapacitor[J]. 材料研究学报, 2017, 31(5): 321-328.
[15] Zhigang YANG,Jianbo YU,Chuanjun LI,Kang DENG,Zhongming REN,Yunbo ZHONG,Qiuliang WANG,Yinming DAI,Hui WANG. Effect of Sintering Conditions on Texture Formation of Si3N4 Ceramic Shaped up in a Strong Magnetic Field[J]. 材料研究学报, 2015, 29(5): 371-376.
No Suggested Reading articles found!