Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (5): 392-400    DOI: 10.11901/1005.3093.2021.139
ARTICLES Current Issue | Archive | Adv Search |
Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine
TAN Chong1, LI Yuanyuan1, WANG Huanhuan1, LI Junsheng2, XIA Zhi2, ZUO Jinlong2(), YAO Lin3
1.School of Pharmacy (Pharmaceutical Engineering Technology Research Center), Harbin University of Commerce, Harbin 150076, China
2.School of Food Science and Engineering, Harbin University of Commerce, Harbin 150076, China
3.College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
Cite this article: 

TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine. Chinese Journal of Materials Research, 2022, 36(5): 392-400.

Download:  HTML  PDF(5788KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Titanium oxide nano-tubes (TiO2 NTs) were firstly prepared by anodic oxidation method, and then Ag and carbonitride g-C3N4 were deposited onto TiO2 NTs under the synergistic action of ultraviolet irradiation and microwave heating to prepare the ternary composite photocatalyst g-C3N4/Ag/TiO2 NTs. Then the prepared composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV Vis diffuse reflectance spectroscopy (UV-Vis) and photoluminescence spectroscopy (PL).The results show that the composite of g-C3N4/Ag/TiO2 NTs presents a higher degradation rate of 51.8% for the carbaryl under the simulated sunlight, in the contrast, that of the simple TiO2 NTs is 29.1% only. The improvement of photocatalytic activity is related to the combined effect of the surface plasmon resonance effect of Ag, the excellent charge conductivity of Ag and the formation of heterojunction between g-C3N4 and TiO2 NTs.

Key words:  inorganic nonmetallic materials      TiO2      Ag      g-C3N4      carbaryl      photocatalysis     
Received:  07 February 2021     
ZTFLH:  X703  
Fund: Natural Science Foundation of Heilongjiang Province(QC2018021)
About author:  ZUO Jinlong, Tel: (0971)6307663, E-mail: zuojinlongnjc@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.139     OR     https://www.cjmr.org/EN/Y2022/V36/I5/392

Fig.1  XRD spectrum of g-C3N4 (a),TiO2 NTs (b), Ag/TiO2 NTs (c) and g-C3N4/Ag/TiO2 NTs (d) samples
Fig.2  SEM image of g-C3N4 (a), TiO2 NTs (b), Ag/TiO2 NTs (c) and g-C3N4/Ag/TiO2 NTs (d)
Fig.3  TEM image of the g-C3N4/Ag/TiO2 NTs sample
Fig.4  EDS spectrum and element distribution of g-C3N4/Ag/TiO2 (a) C, (b) O, (c) Ti, (d) Ag, (e) N
Fig.5  XPS full spectra of TiO2 NTs and g-C3N4/Ag/TiO2 NTs (a) and high resolution spectrum of O 1s (b)、Ti 2p (c)、Ag 3d (d)、C 1s (e)、N 1s (f)
Fig.6  UV-Vis DRS spectra (a) and estimated band gap (b) of TiO2 NTs、Ag/TiO2 NTs and g-C3N4/Ag/TiO2 NTs
Fig.7  Degradation curves (a) and kinetic analysis (b) of TiO2 NTs、Ag/TiO2 NTs and g-C3N4/Ag/TiO2 NTs for carbaryl
SamplekR2
TiO2 NTs0.0410.9898
Ag/TiO2 NTs0.0850.9841
g-C3N4/Ag/TiO2 NTs0.01720.9834
Table 1  Photocatalytic degradation kinetic parameters of TiO2 NTs、Ag/TiO2 NTs和g-C3N4/Ag/TiO2 NTs
Fig.8  Relationship between the photocatalytic performance of catalysts and reuse numbers
Fig.9  Photoluminescence spectra of TiO2 NTs、Ag/TiO2 NTs and g-C3N4/Ag/TiO2 NTs
Fig.10  Free radical scavenging rate
Fig.11  Photoelectrocatalysis mechanism
Fig.12  Chromatogram standard map (a), chromato-gram map (b, c) and product mass spectrum (d) of carbaryl
Fig.13  Degradative pathway (a) and hydrolytic pathway (b) of carbaryl
1 Ruengprapavut S, Sophonnithiprasert T, Pongpoungphet N. The effectiveness of chemical solutions on the removal of carbaryl residues from cucumber and chili presoaked in carbaryl using the HPLC technique [J]. Food Chem., 2019, 30: 125659
2 Şolpan D, Ibrahim K E A, Torun M, et al. The effect of ozonation on the degradation of carbaryl in aqueous solution [J]. J. Environ. Sci. Health, 2020, 55B: 929
3 Wu P, Chen Z B, Zhang Y, et al. RETRACTED: carbaryl waste-water treatment by Rhodopseudomonas sphaeroides [J]. Chemosphere, 2019, 233: 597
doi: 10.1016/j.chemosphere.2019.05.237
4 Wu P, Xie L Y, Mo W T, et al. The biodegradation of carbaryl in soil with Rhodopseudomonas capsulata in wastewater treatment effluent [J]. J. Environ. Manag., 2019, 249: 109226
doi: 10.1016/j.jenvman.2019.06.127
5 Zhang P, Wu J Y, Li L, et al. Sorption and catalytic hydrolysis of carbaryl on pig-manure-derived biochars [J]. J. Agro-Environ. Sci., 2012, 31: 416
张 鹏, 武健羽, 李 力 等. 猪粪制备的生物炭对西维因的吸附与催化水解作用 [J]. 农业环境科学学报, 2012, 31: 416
6 Su Z, Hu K D, Zhu J W, et al. Environmental conditions of carbaryl degradation by bacillus licheniformis B-1 [J]. Jiangsu J. Agr. Sci., 2018, 34: 585
苏 赵, 胡凯弟, 朱佳雯 等. 地衣芽孢杆菌B-1降解西维因的环境条件 [J]. 江苏农业学报, 2018, 34: 585
7 Yurdakal S, Tek B S, Değirmenci Ç, et al. Selective photocatalytic oxidation of aromatic alcohols in solar-irradiated aqueous suspensions of Pt, Au, Pd and Ag loaded TiO2 catalysts [J]. Catal. Today, 2017, 281: 53
doi: 10.1016/j.cattod.2016.05.054
8 Ali A, Shoeb M, Li Y, et al. Enhanced photocatalytic degradation of antibiotic drug and dye pollutants by graphene-ordered mesoporous silica (SBA 15)/TiO2 nanocomposite under visible-light irradiation [J]. J. Mol. Liq., 2021, 324: 114696
doi: 10.1016/j.molliq.2020.114696
9 Chen Z S, Liang X P, Fan X W, et al. Fabrication and photocatalytic properties of Ce-La-Ag Co-doped TiO2/basalt fiber composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33: 515
陈子尚, 梁小平, 樊小伟 等. Ce-La-Ag共掺杂TiO2/玄武岩纤维复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33: 515
doi: 10.11901/1005.3093.2018.588
10 Yurdakal S, Yanar Ş Ö, Çetinkaya S, et al. Green photocatalytic synthesis of vitamin B3 by Pt loaded TiO2 photocatalysts [J]. Appl. Catal., 2017, 202B: 500
11 Liang H J, Jia Z C, Zhang H C, et al. Photocatalysis oxidation activity regulation of Ag/TiO2 composites evaluated by the selective oxidation of Rhodamine B [J]. Appl. Surf. Sci., 2017, 422: 1
doi: 10.1016/j.apsusc.2017.05.211
12 Zhu Y P, Zhu R L, Yan L X, et al. Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite [J]. Appl. Catal., 2018, 239B: 280
13 Huang B T, Xiao L L, Dong H F, et al. Electrochemical sensing platform based on molecularly imprinted polymer decorated N,S co-doped activated graphene for ultrasensitive and selective determination of cyclophosphamide [J]. Talanta, 2017, 164: 601
doi: 10.1016/j.talanta.2016.11.009
14 Zhu X D, Wang J, Ma Y, et al. Influence of heat treatment on photocatalytic activity of Ag-ZnO heterostructure [J]. Chin. J. Mater. Res., 2020, 34: 770
朱晓东, 王 娟, 马 洋 等. 热处理对Ag-ZnO异质结构光催化性能的影响 [J]. 材料研究学报, 2020, 34: 770
doi: 10.11901/1005.3093.2020.132
15 Kong J H, Song C X, Zhang W, et al. Enhanced visible-light-active photocatalytic performances on Ag nanoparticles sensitized TiO2 nanotube arrays [J]. Superlattices Microstruct., 2017, 109: 579
doi: 10.1016/j.spmi.2017.05.050
16 Sun Y, Gao Y, Zeng J Y, et al. Enhancing visible-light photocatalytic activity of Ag-TiO2 nanowire composites by one-step hydrothermal process [J]. Mater. Lett., 2020, 279: 128506
doi: 10.1016/j.matlet.2020.128506
17 Zhu Z, Lu Z Y, Wang D D, et al. Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity [J]. Appl. Catal., 2016, 182B: 115
18 Peng Z T, Gao Y R, Yao C, et al. Preparation and photocatalytic activity of Fe/Yb Co-doped titanium dioxide hollow sphere [J]. Chin. J. Mater. Res., 2021, 35: 135
彭子童, 郜艳荣, 姚 楚 等. 铁/镱掺杂二氧化钛空心球的制备及其光催化性能 [J]. 材料研究学报, 2021, 35: 135
doi: 10.11901/1005.3093.2020.333
19 Sun X F, Xian T, Di L J, et al. Photocatalytic degradation and reduction properties of AuAg/Bi2O3 composite [J]. Chin. J. Mater. Res., 2020, 34: 921
孙小锋, 县 涛, 邸丽景 等. AuAg/Bi2O3复合材料的光催化降解和还原性能 [J]. 材料研究学报, 2020, 34: 921
20 Peng Z T, Gao Y R, Yao C, et al. Preparation and photocatalytic activity of Fe/Yb Co-doped titanium dioxide hollow sphere [J]. Chin. J. Mater. Res., 2021, 35: 135
彭子童, 郜艳荣, 姚 楚 等. 铁/镱掺杂二氧化钛空心球的制备及其光催化性能 [J]. 材料研究学报, 2021, 35: 135
doi: 10.11901/1005.3093.2020.333
21 Cui Z K, Mi L W, Fa W J, et al. Preparation and photocatalytic performance of Pt/BiOCl nanostructures [J]. Chin. J. Mater. Res., 2013, 27: 583
崔占奎, 米立伟, 法文君 等. Pt/BiOCl纳米结构的制备及其光催化性能 [J]. 材料研究学报, 2013, 27: 583
22 Tian T. The research of silver-loading, photoelectric and antibacterial properties of TiO2 nanotube arrays [D]. Xi'an: Northwestern Polytechnical University, 2016
田 甜. TiO2纳米管阵列的银负载、光电及抗菌性能研究 [D]. 西安: 西北工业大学, 2016
23 Mou H Y, Song C X, Zhou Y H, et al. Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution [J]. Appl. Catal., 2018, 221B: 565.
24 Zada A, Ali N, Subhan F, et al. Suitable energy platform significantly improves charge separation of g-C3N4 for CO2 reduction and pollutant oxidation under visible-light [J]. Prog. Nat. Sci., 2019, 29: 138
doi: 10.1016/j.pnsc.2019.03.004
25 Sun M Q, Shen S L, Wu Z J, et al. Rice spike-like g-C3N4/TiO2 heterojunctions with tight-binding interface by using sodium titanate ultralong nanotube as precursor and template [J]. Ceram. Int., 2018, 44: 8125
doi: 10.1016/j.ceramint.2018.01.257
26 Troppová I, Šihor M, Reli M, et al. Unconventionally prepared TiO2/g-C3N4 photocatalysts for photocatalytic decomposition of nitrous oxide [J]. Appl. Surf. Sci., 2018, 430: 335
doi: 10.1016/j.apsusc.2017.06.299
27 Qi F, An W J, Wang H, et al. Combing oxygen vacancies on TiO2 nanorod arrays with g-C3N4 nanosheets for enhancing photoelectrochemical degradation of phenol [J]. Mater. Sci. Semicond. Process., 2020, 109: 104954
doi: 10.1016/j.mssp.2020.104954
28 Li Y N, Chen Z Y, Wang M Q, et al. Interface engineered construction of porous g-C3N4/TiO2 heterostructure for enhanced photocatalysis of organic pollutants [J]. Appl. Surf. Sci., 2018, 440: 229
doi: 10.1016/j.apsusc.2018.01.106
29 Tahir M. Well-designed ZnFe2O4/Ag/TiO2 nanorods heterojunction with Ag as electron mediator for photocatalytic CO2 reduction to fuels under UV/visible light [J]. J. CO2 Utilizat., 2020, 37: 134
30 Liu C, Dong S S, Chen Y G. Enhancement of visible-light-driven photocatalytic activity of carbon plane/g-C3N4/TiO2 nanocomposite by improving heterojunction contact [J]. Chem. Eng. J., 2019, 371: 706
doi: 10.1016/j.cej.2019.04.089
31 Hu J J, Ma C Y, Wang J L, et al. Preparation and photocatalytic properties of GO/TiO2-g-C3N4 nanocomposites [J]. Chin. J. Inorg. Chem., 2020, 36: 2240
胡金娟, 马春雨, 王佳琳 等. GO/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能 [J]. 无机化学学报, 2020, 36: 2240
32 Liu H. Preparation of Ag@AgBr/ZnO and its photocatalytic oxidation performance [D]. Harbin: Harbin University of Commerce, 2020
刘 昊. Ag@AgBr/ZnO的制备及光催化氧化性能的研究 [D]. 哈尔滨: 哈尔滨商业大学, 2020.
33 Akhundi A, Habibi-Yangjeh A. Novel magnetic g-C3N4/Fe3O4/AgCl nanocomposites: facile and large-scale preparation and highly efficient photocatalytic activities under visible-light irradiation [J]. Mater. Sci. Semicond. Process., 2015, 39: 162
doi: 10.1016/j.mssp.2015.04.052
34 Miller P L, Chin Y P. Photoinduced degradation of carbaryl in a wetland surface water [J]. J. Agric. Food Chem., 2002, 50: 6758
doi: 10.1021/jf025545m
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
[5] ZHANG Min, ZHANG Siqian, WANG Dong, CHEN Lijia. Creep Microstructure Damage and Influence on Re-creep Behavior for a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(6): 417-422.
[6] YANG Baolei, LIU Tingguang, SU Xianglin, FAN Yu, QIU Liang, LU Yonghao. Effect of Thermal Aging on Mechanical Properties and Intergranular Corrosion Resistance of 316LN[J]. 材料研究学报, 2023, 37(5): 381-390.
[7] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[8] LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. 材料研究学报, 2023, 37(4): 264-270.
[9] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[11] LIU Huan, LI Xingfu, YANG Yi, LI Cong, FU Zhengrong, BAI Yunhua, ZHANG Zhenghong, ZHU Xinkun. Room Temperature Work-Hardenning Behavior of a Novel Sandwich Sheet of Cu-Al Alloy with Gradient Structure Surfaces on Both Sides[J]. 材料研究学报, 2023, 37(2): 95-101.
[12] CHEN Ruizhi, LIU Lirong, GUO Shengdong, ZHANG Mai, LU Guangxian, LI Yuan, ZHAO Yunsong, ZHANG Jian. Microstructural Stability and Stress Rupture Property of a 6Re/3Ru Containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(10): 721-730.
[13] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[14] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
No Suggested Reading articles found!