Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (5): 353-364    DOI: 10.11901/1005.3093.2021.113
ARTICLES Current Issue | Archive | Adv Search |
Composition Design of Alumina-Forming Austenitic Stainless Steels Based on Cluster-Plus-Glue-Atom Model
ZHANG Shuqi1, DONG Dandan2(), WAN Peng3, WANG Qing1, DONG Chuang1(), YANG Rui4
1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2.College of Physical Science and Technology, Dalian University, 116622, China
3.Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co. Ltd., Foshan 528300, China
4.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Shuqi, DONG Dandan, WAN Peng, WANG Qing, DONG Chuang, YANG Rui. Composition Design of Alumina-Forming Austenitic Stainless Steels Based on Cluster-Plus-Glue-Atom Model. Chinese Journal of Materials Research, 2022, 36(5): 353-364.

Download:  HTML  PDF(8791KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Alumina-forming austenitic (AFA) stainless steel has good high-temperature-oxidation resistance owing to the addition of Al. However, Al may strongly promote the formation of ferrite, which can seriously decrease the creep resistance of the steel. In order to form single-phase austenite, the amount of austenitic stable elements Ni and Al should be accurately tailored. Therefore, the alumina-forming 190 heat resistant stainless steels were analyzed with the so called cluster-plus-glue-atom model, which was previously developed by our group. In the present case, a 16-atom-cluster formula, including 1 center atom, 12 shell atoms and 3 glue atoms, simplified as [Al1-Fe12]-Cr3, is adopted,while the composition proposed by Oak Ridge National Laboratory, and the equivalent complementation of Ni and Cr are taken into consideration. Thereby, two series of AFA stainless steels with a constant carbon content of 0.1% (mass fraction) are designed as: Al x Si0.05Nb0.15-Fe8.7Ni3.0Mn0.3-Cr3.6-x Mo0.2 (x=0.8, 1.0 and 1.1) and Al1Si0.05Nb0.15-Fe11.7-y Ni y Mn0.3-Cr2.6Mo0.2 (y=3.2, 3.4, 3.7 and 4.0), namely, fixed Ni, but varying Al (instead of Cr) content for the former series, and fixed Al, but varying Ni (instead of Fe) content for the later ones, respectively. The effect of solution treatment (1250℃/1.5 h) plus water quenching and the above treatment plus aging treatment (800℃/24 h) on the two series alloys was carefully characterized by means of X-ray diffractometer, optical microscope, scanning electron microscope and Vickers hardness tester. Results show that for the alloys with fixed Ni content of 3.0 designed according to the 16-atom-cluster formula, the matrix is single-phase austenite when Al is 0.8; while ferrite is formed when Al is 1.0 and 1.1. For the alloys with fixed Al of 1.0, the matrix remains single-phase austenite when Ni ranges from 3.2 to 4.0. However, Ni3.2 is enough to avoid the formation of ferrite, while also conforming to economic principle. The ideal cluster formula of AFA stainless steels is identified as [(Al,Si,Nb)1-(Fe,Ni,Mn)12](Cr,Mo,W)3, which describes the average distribution of atoms in alloys.

Key words:  metallic materials      AFA stainless steels      cluster-plus-glue-atom model      heat resistant austenitic stainless steel      alloying      structural stability     
Received:  24 January 2021     
ZTFLH:  TG142.25  
Fund: National Natural Science Foundation of China(51801017);Key Discipline and Major Project of Dalian Science and Technology Innovation Foundation(2020JJ25CY004);Shunde District Science and Technology Project(201911220001)
About author:  DONG Chuang, Tel: (0411)84708615, E-mail: dong@dlut.edu.cn
DONG Dandan, Tel: (0411)87402712, E-mail: dandan3006@126.com;

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.113     OR     https://www.cjmr.org/EN/Y2022/V36/I5/353

Mixing enthalpy △HShell atoms
FeMnNi
Center atomsAl-11-19-22
Si-35-45-40
Ti-17-8-35
V-7-1-18
Nb-16-4-30
Ta-15-4-29
Glue atomsCr-12-7
Mo-25-7
W06-3
Table 1  Mixing enthalpy between center atoms, glue atoms and shell atoms
Cluster formulaMarkElement content/%, mass fraction

Solutionized

hardness

(HV)

Calculated strength

/MPa

Aged

hardness

(HV)

Calculated strength

/MPa

CreqNieqNieq/Creq
RP0.2RmRP0.2Rm
Al0.8Si0.05Nb0.15-Fe8.7Ni3.0Mn0.3-Cr2.8Mo0.2Al0.8Ni3.0Fe-2.45Al-0.16Si-1.58Nb-19.99Ni-1.87Mn-16.53Cr-2.18Mo-0.10C181.44404.0633.5223.56547.2721.928.823.00.80
Al1.0Si0.05Nb0.15-Fe8.7Ni3.0Mn0.3-Cr2.6Mo0.2Al1.0Ni3.0Fe-3.08Al-0.16Si-1.59Nb-20.10Ni-1.88Mn-15.43Cr-2.19Mo-0.10C224.46550.3723.8255.38655.4788.829.323.10.79
Al1.1Si0.05Nb0.15-Fe8.7Ni3.0Mn0.3-Cr2.5Mo0.2Al1.1Ni3.0Fe-3.40Al-0.16Si-1.60Nb-20.16Ni-1.89Mn-14.88Cr-2.20Mo-0.10C239.60601.7755.6280.84742.0842.229.523.20.79
Al1.0Si0.05Nb0.15-Fe8.5Ni3.2Mn0.3-Cr2.6Mo0.2Al1.0Ni3.2Fe-3.08Al-0.16Si-1.59Nb-21.43Ni-1.88Mn-15.42Cr-2.19Mo-0.10C235.60588.1747.2274.82721.5829.629.324.50.84
Al1.0Si0.05Nb0.15-Fe8.3Ni3.4Mn0.3-Cr2.6Mo0.2Al1.0Ni3.4Fe-3.08Al-0.16Si-1.59Nb-22.75Ni-1.88Mn-15.41Cr-2.19Mo-0.10C231.35573.7738.3271.62710.6822.929.225.80.88
Al1.0Si0.05Nb0.15-Fe8.0Ni3.7Mn0.3-Cr2.6Mo0.2Al1.0Ni3.7Fe-3.07Al-0.16Si-1.59Nb-24.74Ni-1.88Mn-15.40Cr-2.19Mo-0.10C218.21529.0710.7277.80731.6835.829.227.80.95
Al1.0Si0.05Nb0.15-Fe7.7Ni4.0Mn0.3-Cr2.6Mo0.2Al1.0Ni4.0Fe-3.07Al-0.16Si-1.59Nb-26.72Ni-1.88Mn-15.38Cr-2.18Mo-0.10C242.79612.6762.3304.81823.5892.629.229.71.02
Table 2  The cluster formula, mark, element content, Vickers hardness, calculated strength (calculated by the conversion equations between Vickers hardness and tensile strength[30]) and equivalents (calculated by Uggowitzer's equivalent equations[24]) of designed alloys
Fig.1  Composition design procedure of AFA stainless steels based on cluster-plus-glue-atom model
Fig.2  XRD patterns of designed alloys after 1250℃/1.5 h solutionizing (a) and 800℃/24 h aging (b)
Fig.3  Relation between lattice parameter a and Nieq/Creq ratio
Fig.4  Typical optical microscope (OM) images of designed alloys after 1250℃/1.5 h solutionizing and after 800℃/24 h aging (a, b) Al0.8Ni3.0, (c, d) Al1.0Ni3.0, (e, f) Al1.1Ni3.0, (g, h) Al1.0Ni3.2
Fig.5  Second electron morphologies of the designed alloys after solutionizing at 1250℃ for 1.5 h and then aging 800℃ for 24 h (a) Al0.8Ni3.0, (b) Al1.0Ni3.0, (c) Al1.1Ni3.0, (d) Al1.0Ni3.2, (e) Al1.0Ni3.4, (f) Al1.0Ni3.7, (g) Al1.0Ni4.0
Fig.6  Typical backscattered electron images of the designed alloys
Fig.7  Distribution of designed alloys and 190 AFA stainless steels in literature[10~21] on Schaeffler constitution diagram[31] (Nieq and Creq were calculated by Uggowitzer’s equivalent equations[24]: Nieq=%Ni+%Co+0.1%Mn-0.01%Mn2+18%N+30%C; Creq=%Cr+1.5%Mo+1.5%W+0.48%Si+2.3%V+1.75%Nb+2.5%Al)
Fig.8  Variations of microhardness HV with relative austenitic stability Nieq/Creq
Fig.9  Calculated strength of designed alloys according to Vickers hardness, note: YS-yield strength, UTS-ultimate strength, shadow ragions show corresponding tensile strength of 20Ni-(3~4)Al-(0.6~1)Nb based AFA stainless steels tested by ORNL[16]
1 Nie S H, Chen Y, Ren X, et al. Corrosion of alumina-forming austenitic steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti in supercritical water [J]. J. Nucl. Mater., 2010, 399: 231
doi: 10.1016/j.jnucmat.2010.01.025
2 Kondo K, Miwa Y, Okubo N, et al. Development of corrosion-resistant improved Al-doped austenitic stainless steel [J]. J. Nucl. Mater., 2011, 417: 892
doi: 10.1016/j.jnucmat.2011.01.083
3 Wang J, Qiao Y F, Dong N, et al. The influence of temperature on the oxidation mechanism in air of HR3C and aluminum-containing 22Cr-25Ni austenitic stainless steels [J]. Oxid. Met., 2018, 89: 713
doi: 10.1007/s11085-017-9817-2
4 Fujioka T, Kinugasa M, Iizumi S, et al. Oxidation-resisting austenitic stainless steel [P]. US Pat, 4063935A, 1977
5 Pivin J C, Delaunay D, Roques-Carmes C, et al. Oxidation mechanism of Fe-Ni-(20-25%)Cr-5% Al alloys-influence of small amounts of yttrium on oxidation kinetics and oxide adherence [J]. Corros. Sci., 1980, 20: 351
doi: 10.1016/0010-938X(80)90005-0
6 Ramakrishnan V, Mcgurty J A, Jayaraman N. Oxidation of high-aluminum austenitic stainless steels [J]. Oxid. Met., 1988, 30: 185
doi: 10.1007/BF00666596
7 Satyanarayana D V V, Malakondaiah G, Sarma D S. Steady state creep behaviour of NiAl hardened austenitic steel [J]. Mater. Sci. Eng., 2002, 323A: 119
8 Pint B A, Peraldi R, Maziasz P J. The use of model alloys to develop corrosion-resistant stainless steels [J]. Mater. Sci. Forum, 2004, 461-464: 815
doi: 10.4028/www.scientific.net/MSF.461-464.815
9 Adams T M, Korinko P, Duncan A. Evaluation of oxidation and hydrogen permeation in Al-containing stainless steel alloys [J]. Mater. Sci. Eng., 2006, 424A: 33
10 Brady M P, Yamamoto Y, Santella M L, et al. Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels [J]. Scripta Mater., 2007, 57: 1117
doi: 10.1016/j.scriptamat.2007.08.032
11 Yamamoto Y, Brady M P, Lu Z P, et al. Alumina-forming austenitic stainless steels strengthened by laves phase and MC carbide precipitates [J]. Metall. Mater. Trans., 2007, 38A: 2737
12 Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels [J]. Science, 2007, 316: 433
pmid: 17446398
13 Brady M P, Yamamoto Y, Santella M L, et al. The development of alumina-forming austenitic stainless steels for high-temperature structural use [J]. JOM, 2008, 60(7): 12
14 Yamamoto Y, Takeyama M, Lu Z P, et al. Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates [J]. Intermetallics, 2008, 16: 453
doi: 10.1016/j.intermet.2007.12.005
15 Yamamoto Y, Santella M L, Brady M P, et al. Effect of alloying additions on phase equilibria and creep resistance of alumina-forming austenitic stainless steels [J]. Metall. Mater. Trans., 2009, 40A: 1868
16 Yamamoto Y, Brady M P, Santella M L, et al. Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels [J]. Metall. Mater. Trans., 2011, 42A: 922
17 Yamamoto Y, Muralidharan G, Brady M P. Development of L12-ordered Ni3(Al, Ti)-strengthened alumina-forming austenitic stainless steel alloys [J]. Scripta Mater., 2013, 69: 816
doi: 10.1016/j.scriptamat.2013.09.005
18 Xu X Q, Zhang X F, Chen G L, et al. Improvement of high-temperature oxidation resistance and strength in alumina-forming austenitic stainless steels [J]. Mater. Lett., 2011, 65: 3285
doi: 10.1016/j.matlet.2011.07.021
19 Xu X Q, Zhang X F, Sun X Y, et al. Effects of silicon additions on the oxide scale formation of an alumina-forming austenitic alloy [J]. Corros. Sci., 2012, 65: 317
doi: 10.1016/j.corsci.2012.08.039
20 Sa X R. Mechanical properties of high aluminum 304, 316L and 310S steels and effect of aluminum on action mechanism [D]. Lanzhou: Lanzhou University of Technology, 2013
撒兴瑞. 铸造高铝304、316L、310S钢的性能及铝元素的作用机制 [D]. 兰州: 兰州理工大学, 2013
21 Yao L. The effect and action mechanism of Al element on microstucture and properties of 17-7PH、2205 stainless steel [D]. Lanzhou: Lanzhou University of Technology, 2013
姚 亮. A1元素对17-7PH、2205不锈钢组织、性能的影响及作用机制 [D]. 兰州: 兰州理工大学, 2013
22 Pickering F B. Physical Metallurgy and the Design of Steels [M]. London: Applied Science Publishers, 1978: 62
23 Tchizhik A A, Tchizhik T A, Tchizhik A A. Optimization of the heat treatment for steam and gas turbine parts manufactured from 9-12% Cr steels [J]. J. Mater. Process. Technol., 1998, 77: 226
doi: 10.1016/S0924-0136(97)00421-4
24 Uggowitzer P J, Bähre W F, Wohlfromm H, et al. Nickel-free high nitrogen austenitic stainless steels produced by metal injection moulding[J]. Mater. Sci. Forum, 1999, 318-320: 663
doi: 10.4028/www.scientific.net/MSF.318-320.663
25 La P Q, Li Y F, Liu S G. Corrosion resistance of aluminum-doped 316L stainless steel [J]. Mater. Prot., 2010, 43(12): 62
喇培清, 李玉峰, 刘闪光. 316L不锈钢中添加Al后的抗腐蚀性能 [J]. 材料保护, 2010, 43(12): 62
26 Cowley J M. Short-and long-range order parameters in disordered solid solutions [J]. Phys. Rev., 1960, 120: 1648
doi: 10.1103/PhysRev.120.1648
27 Wang Q, Zha Q F, Liu E X, et al. Composition design of high-strength martensitic precipitation hardening stainless steels based on a cluster model [J]. Acta Metall. Sin., 2012, 48: 1201
doi: 10.3724/SP.J.1037.2012.00053
王 清, 查钱锋, 刘恩雪 等. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计 [J]. 金属学报, 2012, 48: 1201
28 Zhang J Z, Wen D H, Jiang B B, et al. Effect of minor Ta-and Zr-alloying on high-temperature microstructural stability of Fe-Cr-Al-based ferritic stainless steels [J]. Chin. J. Mater. Res., 2017, 31: 336
张军政, 温冬辉, 姜贝贝 等. 微量Ta和Zr对Fe-Cr-Al系不锈钢高温组织稳定性的影响 [J]. 材料研究学报, 2017, 31: 336
doi: 10.11901/1005.3093.2016.695
29 Dong C, Dong D D, Wang Q. Chemical units in solid solutions and alloy composition design [J]. Acta Metall. Sin., 2018, 54: 293
董 闯, 董丹丹, 王 清. 固溶体中的化学结构单元与合金成分设计 [J]. 金属学报, 2018, 54: 293
30 Chen B C, Li G F, Yang W. Conversion relation of leeb-hardness, vickers-hardness and strength of austenitic stainless steels [J]. Mater. Mechan. Eng., 2009, 33(9): 37
陈冰川, 李光福, 杨 武. 奥氏体不锈钢里氏硬度、维氏硬度及强度之间的换算关系 [J]. 机械工程材料, 2009, 33(9): 37
31 Schaeffler A L. Constitution diagram for stainless steel weld metal [J]. Met. Prog., 1949, 56: 680
32 De Cicco H, Luppo M I, Gribaudo L M, et al. Microstructural development and creep behavior in A286 superalloy [J]. Mater. Charact., 2004, 52: 85
doi: 10.1016/j.matchar.2004.03.007
33 Trotter G, Hu B, Sun A Y, et al. Precipitation kinetics during aging of an alumina-forming austenitic stainless steel [J]. Mater. Sci. Eng., 2016, 667A: 147
34 Zhou D Q, Zhao W X, Mao H H, et al. Precipitate characteristics and their effects on the high-temperature creep resistance of alumina-forming austenitic stainless steels [J]. Mater. Sci. Eng., 2015, 622A: 91
35 Trotter G, Baker I. Orientation relationships of Laves phase and NiAl particles in an AFA stainless steel [J]. Philos. Mag., 2015, 95: 4078
doi: 10.1080/14786435.2015.1111529
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!