Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (11): 829-836    DOI: 10.11901/1005.3093.2021.477
ARTICLES Current Issue | Archive | Adv Search |
In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability
ZONG Ping1,2,3, LI Shiwei2,3, CHEN Hong2,3, MIAO Sainan2,3, ZHANG Hui4, LI Chao2,3()
1.School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2.Xi'an Jiaotong University Suzhou Academy, Suzhou 215123, China
3.School of Nano-Science and Nano-Engineering (Suzhou), Xi'an Jiaotong University, Suzhou 215123, China
4.State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
Cite this article: 

ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability. Chinese Journal of Materials Research, 2022, 36(11): 829-836.

Download:  HTML  PDF(16614KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nano-copper-carbon composites (NCCC) was prepared by one-step pyrolysis in nitrogen atmosphere using natural cotton fiber with adsorbate copper sulfate as template. The carbon coated nano-Cu or micro-Cu was in situ prepared by taking cotton fiber with adsorbate copper sulfate as pyrolytic carbon source and commercial nano-copper or micro-copper as Cu source. The stability of the prepared material was characterized by TEM, XRD and Raman spectroscopy. The results show that NCCC is a typical material with carbon coated nano-Cu core-shell structure, and the carbon coated nano- or micron-Cu materials can be prepared by in-situ pyrolysis, which further confirmed that the pyrolysis atmosphere of cotton fiber could act as carbon source and in-situ reducing agent at the same time. And the oxidation resistance of carbon coated material was verified:the formation of carbon shells allows NCCC to maintain the phase composition of copper and cuprous oxide after exposure to air for 180 days or water for 35 days, and the commercial Cu nanoparticles covered with carbon shells have not been oxidized after 120 days of exposure to air.

Key words:  composites      core-shell structure      in-situ thermolysis      nano-copper      stability     
Received:  18 August 2021     
ZTFLH:  TB333  
Fund: National Natural Science Foundation of China(22005237);Natural Science Foundation of Ningxia(2021AAC03029);Natural Science Foundation of Jiangsu Province(BK20191188);Jiangsu Province Foreign Expert Program(BX2020032)
About author:  LI Chao, Tel: 13962190459, E-mail:cl12@mail.xjtu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.477     OR     https://www.cjmr.org/EN/Y2022/V36/I11/829

Fig.1  TEM images of NCCC (a, b) and particle size of copper particles (c)
Fig.2  XRD patterns of NCCC
Fig.3  TEM images of Nano-Cu (a, b), Nano-Cu-air (c, d), Nano-Cu-air-Cotton (e, f) and Nano-Cu-air-N2 (g, h)
Fig.4  Raman spectrum and XRD patterns of Nano-Cu and Micro-Cu before and after treatment
Fig.5  TGA curves of Nano-Cu, (a) tested in N2 atmosphere (10℃/min), (b) tested in air atmosphere (10℃/min)
Sample namePhase composition
CuCu2OCuO
Nano-Cu
Nano-Cu-air
Nano-Cu-air- N2
Nano-Cu-air- Cotton×
Table 1  Phase composition of Nano-Cu before and after treatment
Fig.6  TEM images of Micro-Cu (a), Micro-Cu-air (b), Micro-Cu-air-Cotton (c, d, e), and Micro-Cu-air-N2 (f, g)
Sample namePhase composition
CuCu2OCuO
Micro-Cu××
Micro-Cu-air
Micro-Cu-air- N2
Micro-Cu-air- Cotton×
Table 2  Phase composition of Micro-Cu before and after treatment
Fig.7  XRD patterns of carbon-capsulated nano-copper particles stored in different environment for different time (a) NCCC stored in different environment for different time; (b) Nano-Cu stored for one day and 120 d; (c) Nano-Cu-air-Cotton stored for 1 d and 120 d
1 Ruoff R S, Lorents D C, Chan B, et al. Single-crystal metals encapsulated in carbon nanoparticles [J]. Science, 1993, 259: 346
pmid: 17832348
2 Li H B, Kang W J, Xi B J, et al. Thermal synthesis of Cu@carbon spherical core-shell structures from carbonaceous matrices containing embedded copper particles [J]. Carbon, 2010, 48: 464
doi: 10.1016/j.carbon.2009.09.063
3 Chen Y J, Xiao G, Wang T S, et al. Porous Fe3O4/Carbon core/shell nanorods: synthesis and electromagnetic properties [J]. J. Phys. Chem. C, 2011, 115: 13603
doi: 10.1021/jp202473y
4 Wang S L, Huang X L, He Y H, et al. Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene [J]. Carbon, 2012, 50: 2119
doi: 10.1016/j.carbon.2011.12.063
5 Xue J, Xiang H K, Wang K P, et al. The preparation of carbon-encapsulated Fe/Co nanoparticles and their novel applications as bifunctional catalysts to promote the redox reaction for p-nitrophenol [J]. J. Mater. Sci., 2011, 47: 1737
doi: 10.1007/s10853-011-5953-2
6 El-Toni A M, Habila M A, Labis J P, et al. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures [J]. Nanoscale, 2016, 8: 2510
doi: 10.1039/c5nr07004j pmid: 26766598
7 Lu W J, Guo Y T, Luo Y Q, et al. Core-shell materials for advanced batteries [J]. Chem. Eng. J., 2019, 355: 208
doi: 10.1016/j.cej.2018.08.132
8 Chen Z, Chen M J, Yan H J, et al. Enhanced solar thermal conversion performance of plasmonic gold dimer nanofluids [J]. Appl. Therm. Eng., 2020, 178: 1
9 Chen X Y, Wu D L, Zhou P, et al. Modeling the solar absorption performance of Copper@Carbon core-shell nanoparticles [J]. J. Mater. Sci., 2021, 56: 13659
doi: 10.1007/s10853-021-06114-7
10 Pan S, Zhuang X, Wang B, et al. Preparation and properties of carbon coated manganese dioxide electrode materials [J]. Chin. J. Mater. Res., 2019, 33(7): 530
doi: 10.11901/1005.3093.2018.639
潘 双, 庄 雪, 王 冰 等. 碳包覆改性二氧化锰电极材料的制备和性能 [J]. 材料研究学报, 2019, 33(7): 530
11 Xu B S, Guo J J, Wang X M, et al. Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution [J]. Carbon, 2006, 44: 2631
doi: 10.1016/j.carbon.2006.04.024
12 Su L W, Jing Y, Zhou Z. Li ion battery materials with core–shell nanostructures [J]. Nanoscale, 2011, 3: 3967
doi: 10.1039/c1nr10550g
13 Gawande M B, Goswami A, Felpin F-X, et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis [J]. Chem. Rev., 2016, 116: 3722
doi: 10.1021/acs.chemrev.5b00482 pmid: 26935812
14 Liu P B, Gao S, Wang Y, et al. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials [J]. Chem. Eng. J., 2020, 381: 122653
doi: 10.1016/j.cej.2019.122653
15 Huang X L, Hou L Z, Yu B W, et al. Preparation, formation mechanism and optical properties of C/Cu shell/core nanostructures [J]. Acta Phys. Sin., 2013, 62: 108102
doi: 10.7498/aps.62.108102
黄小林, 侯丽珍, 喻博闻 等. Cu/C核/壳纳米结构的气相合成、形成机理及其光学性能研究 [J]. 物理学报, 2013, 62: 108102
16 Yu C, Qiu J S. Preparation and magnetic behavior of carbon-encapsulated cobalt and nickel nanoparticles from starch [J]. Chem. Eng. Res. Des., 2008, 86: 904
doi: 10.1016/j.cherd.2008.02.006
17 Ma J F, Xing J X, Wang K, et al. Inspired by efficient cellulose-dissolving system: facile one-pot synthesis of biomass-based hydrothermal magnetic carbonaceous materials [J]. Carbohydr. Polym., 2017, 164: 127
doi: 10.1016/j.carbpol.2017.01.087
18 Li B, Zhou L, Wu D, et al. Photochemical chlorination of graphene [J]. ACS Nano, 2011, 5(7): 5957
doi: 10.1021/nn201731t pmid: 21657242
19 Crowther A C, Ghassaei A, Jung N, et al. Strong charge-transfer doping of 1 to 10 layer graphene by NO2 [J]. ACS Nano, 2012, 6(2): 1865
doi: 10.1021/nn300252a pmid: 22276666
20 Ammar M R, Galy N, Rouzaud J N, et al. Characterizing various types of defects in nuclear graphite using Raman scattering: heat treatment, ion irradiation and polishing [J]. Carbon, 2015, 95: 364
doi: 10.1016/j.carbon.2015.07.095
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[4] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[5] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[6] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[7] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[8] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[9] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[10] ZHANG Shuqi, DONG Dandan, WAN Peng, WANG Qing, DONG Chuang, YANG Rui. Composition Design of Alumina-Forming Austenitic Stainless Steels Based on Cluster-Plus-Glue-Atom Model[J]. 材料研究学报, 2022, 36(5): 353-364.
[11] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[12] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[13] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[14] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[15] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
No Suggested Reading articles found!