Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (11): 843-852    DOI: 10.11901/1005.3093.2017.771
Orginal Article Current Issue | Archive | Adv Search |
Precipitation Strengthening of Supersaturated Alloying Elements in Cu40Zn Graphite Brasses Prepared by Powder Metallurgy
Shufeng LI1,2(), Imai Hisashi2, Kondoh Katsuyoshi2, Xin ZHANG1, Deng PAN1, Yabo FU3
1 School of Materials Science and Engineering, Xian University of Technology, Xian 710048, China
2 Joining and Welding Research Institute, Osaka University, Osaka 5670047, Japan
3 School of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, China
Cite this article: 

Shufeng LI, Imai Hisashi, Kondoh Katsuyoshi, Xin ZHANG, Deng PAN, Yabo FU. Precipitation Strengthening of Supersaturated Alloying Elements in Cu40Zn Graphite Brasses Prepared by Powder Metallurgy. Chinese Journal of Materials Research, 2018, 32(11): 843-852.

Download:  HTML  PDF(9973KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cr, Fe, Ti and Sn were added to brass matrix as trace alloying elements. The brass alloys powder prepared by water atomization process were premixed with graphite particles and consolidated at appropriate temperature. The sintered billet was hot extruded to increase the density and prepare extrusion rod for tensile test. The effects of graphite particles and alloying elements on the machinability, microstructural and mechanical properties of Cu40Zn brass were investigated in detail. It was found that the super-saturated solid solution of Cr, Fe and Ti creates a high precipitation reaction chemical potential in water atomized brass powder, which precipitated in form of nano/micro scale particles in the subsequent hot working showing superior strengthening effect. Graphite particles with appreciate content can improve machinability effectively without deteriorating the mechanical properties.

Key words:  non-ferrous metal and alloy      graphite brass      powder metallurgy      lead-free      mechanical properties      machinability     
Received:  28 December 2017     
ZTFLH:  TG146  
Fund: Supported by National Natural Science Foundation of China (Nos. 51571160 & 51871180), Japan Science and Technology Agency (JST) (No. 25249102)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.771     OR     https://www.cjmr.org/EN/Y2018/V32/I11/843

Fig.1  Water cooled atomization process and schematic diagram of sample preparation process
Fig.2  Microstructure of BS40-M raw brass powder and raw material for experiment (a) Water atomized brass alloy powder; (b) Graphite powder; (c) Microstructure of as-cast brass alloy; (d) Profile microstructure of water atomized brass alloy powder profile
Fig.3  Microstructures and mechanical properties of B40-1.0Cr1.0Gr graphite brass (a) BS40-1.0Cr1.0Gr powder mixtures and its local micrograph; (b-c) SEM micrograph and EDS analysis of BS40-1.0Cr1.0Gr graphite brass prepared at different hot extrusion temperatures; (d) XRD patterns of BS40-1.0Cr1.0Gr graphite brass prepared at different hot extrusion temperatures; (e) Stress-strain curves of BS40-1.0Cr1.0Gr graphite brass prepared at different hot extrusion temperatures
Fig.4  Microstructures of BS40-1.0Ti0.6Sn brass alloy sintered and hot extruded at different temperatures (a) BS40-1.0Ti0.6Sn brass alloy sintered at 673 K, nano-precipitations are shown in arrows in the upper right-hand magnified photograph; (b) BS40-1.0Ti0.6Sn brass alloy sintered at 773 K; (c) BS40-1.0Ti0.6Sn brass alloy sintered at 873 K; (a') BS40-1.0Ti0.6Sn brass alloy sintered at 673 K and hot extrusion; (b') BS40-1.0Ti0.6Sn brass alloy sintered at 773 K and hot extrusion; (c) BS40-1.0Ti0.6Sn brass alloy sintered at 873 K and hot extrusion, the direction of extrusion is shown in the arrow in the picture
Fig.5  (a) XRD patterns of BS40-1.0Ti0.6Sn sintered at different temperature; (b) Microstructures of as-cast alloys; (c) EDS mappings of as-cast alloys
Fig.6  (a) The strain-stress curves of BS40-1.0Ti0.6Sn brass alloys sintered at different temperatures and hot extrusion; (b) The fracture morphology of the sample sintered at 673 K; (c) The fracture morphology of the sample sintered at 873 K
Fig.7  Effect of multiple alloying elements on microstructures and properties of BS40-M brass alloy (a) The strain-stress curves and mechanical properties data of as-extruded BS40-M; (b-b') SEM images, TEM images and the corresponding SAED of as-extruded BS40-0.2Cr0.2Fe0.6Sn; (c-c') SEM images, TEM images and the corresponding SAED of as-extruded BS40-0.7Cr0.3Fe0.6Sn1.0Ti
Fig.8  The mechanical property and machinability of BS40-M graphite brass (a) Tensile properties of BS40-M graphite brass; (a') Microstructure of the fracture of BS40-M; (a'') Image of forging and deforming BS40-M; (b) Image of traditional leaded brass cutting chip; (c) Image of BS40-M graphite brass cutting chip; (c') SEM images and the corresponding EDS mappings of BS40-M graphite brass cutting chip
[1] Davis J R.Alloying, Understanding the Basics [Z], ASM International, Materials Park,OH, 2001, 44073-0002
[2] Pantazopoulos G, Vazdirvanidis A.Characterization of the microstructural aspects of machinable α-β phase brass[J]. Microscopy and Analysis, 2008, 9: 13
[3] Vilarinho C, Davimb J P, Soares D, et al.Influence of the chemical composition on the machinability of brasses[J]. Journal of Materials Processing Technology, 2005, 170: 441
[4] European restriction of the use of certain hazardous substances in electricaland electronic equipment, Official Journal L 037,13/02/2003 P.0019-0023, content/EN/TXT/?uri=CELEX:32002L0095
[5] Li S, Imai H, Atsumi H, et al.Characteristics of high strength extruded BS40CrFeSn alloy prepared by spark plasma sintering and hot pressing[J]. Journal of Alloys and Compounds, 2010, 493: 128
[6] Whiting L, Newcombe P, Sahoo M.Casting Characteristics of Red Brass Containing Bismuth and Selenium[J]. AFS Trans. 1995, 103: 683
[7] Peter D.New bismuth/selenium red brass alloys solve lead concerns[J]. Mod. Casting, 1997: 87
[8] Kondoh K, Kosaka Y, Okuyama M, et al.Collected Abstracts of 46th technology Conference of Japan Copper and Brass Association[C]. 2006, 153
[9] Saigal A, Rohatgi P.Machinability of cast lead free yellow brass containing graphite particles[J]. AFS Trans. 1996, 104: 225
[10] Vilarinho C, Davim J P, Soares D, et al.Influence of the chemical composition on the machinability of brasses[J]. J. Mater. Pro. Technol. 2005, 170: 441
[11] Cabral G, Reis P, Polini R, et al. Cutting performance of time-modulated chemical vapor deposited diamond coated tool inserts during machining graphite [J]. Diamond Related Mater.2006, 15-10: 1753
[12] Suresha B, Siddaramaiah, Kishore, et al.Investigations on the influence of graphite filler on dry sliding wear and abrasive wear behavior of carbon fabric reinforced epoxy composites[J]. Wear 2009, 267: 1405
[13] Zhao H, Liu L, Wu Y, et al.Investigation on wear and corrosion behavior of Cu-graphite composites prepared by electroforming[J]. Comp. Sci. 2007, 67: 1210
[14] Huang J S, Peng C Q, Zhang S Q, et al.Lead free cutting copper alloys[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(9): 1486(黄劲松, 彭超群, 章四琪等. 无铅易切削铜合金[J]. 中国有色金属学报, 2006, 16(9): 1486)
[15] Zhang Q Z.The effect of graphite particle size on the properties of copper-graphite composites made with copper-coated and uncoated graphite powders via electroless copper plating[M]. Fuzhou: Fuzhou University, 2004(张钦钊. 石墨粒度及其表面化学镀铜对铜—石墨复合材料性能的影响[M]. 福州: 福州大学, 2004)
[16] Zhang H M, He X B, Shen X Y, et al.Microstructure and thermal properties of Mo-coated graphite fiber/Cu composites[J]. Chinese Journal of Nonferrous Metals, 2013, 23(4): 1092(张昊明, 何新波, 沈晓宇等. 镀钼石墨纤维/铜复合材料的微观组织和热性能[J], 中国有色金属学报, 2013, 23(4): 1092)
[17] Kim J K, Rohatgi P K, Choi J O.Wear properties and effect of molds on microstructure of graphite reinforced copper alloy composites made by centrifugal casting[J]. Metals and Materials International, 2005, 11(4): 333
[18] Rohatgi P K, Nath D, Kim J K.Corrosion and de-alloying of cast lead-free copper alloy-graphite composites[J]. Corrosion Science, 2000, 42(9): 1553
[19] Huang J S, Zhou Z C.A lead-free Machinable silicon graphite brass [P]. Chin Pat, 10030662, 2008(黄劲松, 周忠诚. 一种无铅易切削硅石墨黄铜 [P].中国专利, 10030662, 2008)
[20] Xue Y Y, Tang J C, Zhuo H O.Microstructures and properties of leadfree free-cutting graphite-brass prepared by graphitization of cementite[J]. Acta Metallurgica Sinica, 2015, 51(2): 223(薛滢妤, 唐建成, 卓海鸥等. 渗碳体石墨化制备无铅易切削石墨黄铜的组织及性能[J]. 金属学报,2015, 51(2): 223)
[21] ASM metals handbook, alloy phase diagrams[Z], ASM Handbook,OH, 1990, 3, 10th edt.
[22] Fernee H, Nairn J, Atrens A.Precipitation harding of Cu-Fe-Cr alloy[J]. J. Mater Sci, 2001, 36: 5497
[23] Lu D P, Wang J, Zeng W J, Liu Y, Lu L, Sun B D.Study on high-strength and high-conductivity Cu-Fe-P alloys[J]. Mater Sci Eng A, 2006, 421: 254
[24] Vaidyanathan T K, Mukherjee K.Precipitation in Cu-Ti and Cu-Ti-Al alloys; discontinuous and localized precipitation[J]. Mater Sci Eng, 1976, 24: 143
[25] Liu P, Su J, Dong Q, et al.Microstructure and properties of Cu-Cr-Zr alloy after rapidly solidified aging and solid solution aging[J]. J Mater Sci Technol, 2005, 21: 475
[26] Artens A, Nairn J, Fernee H, et al.Cold worked Cu-Fe-Cr alloys[J]. Mater Forum, 1997, 21: 57
[27] Laughlin D E, Cahn J W.Spinodal decomposition in age hardening copper-titanium alloys[J]. Acta Metall, 1975, 23: 329
[28] Poter A, Thompson A W.On the mechanism of precipitation strengthening in Cu-Ti alloys[J]. Scripta Metall, 1984, 18:1185
[29] Kumar KCH, Ansara I, Wollants P, et al.Thermodynamic optimization of the Cu-Ti system[J]. Z Metall, 1996, 87: 666
[30] Imai H, Li S, Kondoh K, et al.Effect of chromium precipitation on machinability of sintered brass alloys dispersed with graphite particles[J]. Materials Transactions, 2011, 52(7): 1426
[31] Fernee H, Nairn J, Atrens A.Cold worked Cu-Fe-Cr alloys[J]. Journal of Materials Science 2001, 36: 5497
[32] Mao W, An Z, Li Y.Challenges of the study of precipitation behaviors of MnS in oriented electrical steels[J]. Frontiers of Materials Science in China, 2008, 2: 233
[33] Mao W, An Z, Guo W, et al.Influence of temperature evolution on precipitation behavior of second phase particles in grain-oriented electrical steel[J]. Steel Research International, 2010, 81: 6
[34] Sun W P, Militzer M, Jonas J J.Strain-induced nucleation of MnS in electrical steels[J]. Metallurgical Transactions, 1992, 23A: 821
[35] Shufeng Li, Hisashi Imai, Katsuyoshi Kondoh, et al.Development of precipitation strengthened brass with Ti and Sn alloying elements additives by using water atomized powder via powder metallurgy route[J]. Materials Chemistry and Physics, 2012, 135: 644
[36] Shufeng Li, Hisashi Imai, Haruhiko Atsumi, et al.Phase transformation and precipitation hardening behavior of Cr and Fe in BS40CrFeSn alloy[J]. J Mater Sci, 2010, 45:5669
[37] Kondoh K, Imai H, Li S, et al.Study of lead-free and machinable high-strength P/M brass alloys[C], Proceedings of Spring Meeting of JSMP.111, Tokyo, 2013, 27
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[5] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[6] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[7] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[8] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[9] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[10] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[11] YU Cong, CHEN Leping, JIANG Hongxiang, ZHOU Quan, YANG Chenggang. Effect of Deep Cryogenic-Aging Treatment on Microstructure and Mechanical Properties of 7075 Al-alloy[J]. 材料研究学报, 2023, 37(2): 120-128.
[12] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[14] ZHANG Yutuo, ZOU Hao, WANG Pei, LIU Gongmei. Effect of Molybdenum on Mechanical Properties of ZG04CR13Ni4Mo Stainless Steel[J]. 材料研究学报, 2023, 37(1): 65-69.
[15] WANG Wei, ZHOU Shanqi, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Kuaishe. Effect of Anneal Treatment on Microstructure, Texture and Mechanical Properties of TC4 Alloy Plates[J]. 材料研究学报, 2023, 37(1): 70-80.
No Suggested Reading articles found!