Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (1): 70-80    DOI: 10.11901/1005.3093.2022.103
ARTICLES Current Issue | Archive | Adv Search |
Effect of Anneal Treatment on Microstructure, Texture and Mechanical Properties of TC4 Alloy Plates
WANG Wei1,2(), ZHOU Shanqi1, GONG Penghui1, ZHANG Haoze2,3, SHI Yaming2, WANG Kuaishe1
1.School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.Yunnan Titanium Industry Co., Ltd, Chuxiong 651209, China
3.School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

WANG Wei, ZHOU Shanqi, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Kuaishe. Effect of Anneal Treatment on Microstructure, Texture and Mechanical Properties of TC4 Alloy Plates. Chinese Journal of Materials Research, 2023, 37(1): 70-80.

Download:  HTML  PDF(9283KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of the anneal temperature on the microstructure, micro-texture and mechanical properties of the hot rolled Ti-6Al-4V alloy were investigated. The results show that the as rolled Ti-6Al-4V alloy presents a bimodal microstructure. The content of equiaxed α-phase increased after annealing. The content of secondary α-phase tented to decrease, whilst to be gradually spheroidized. The microstructure transformed into equiaxed structure after annealing at 900℃. With the increase of anneal temperature, the preferred orientation of α-phase were changed. Correspondingly, the micro-texture changed from B-type to mixed texture, then to B-type again. The crystal directions dispersed when the sample anneal at 800℃. The texture consisted of {0001}<31¯2¯0>, {0001}<98¯1¯0>, {0001}<31¯2¯0> and {0001}<12¯10>. The relationship between the mechanical performance and the annealing temperature were assessed via tensile tests. It follows that with the increased of annealing temperature, the tensile strength increased but the yield strength decreased, spontaneously, the ratio of yield strength to tensile strength decreased. In a word, the comprehensive mechanical properties of the alloy may be enhanced through proper annealing process.

Key words:  metallic materials      TC4 titanium alloy      texture      annealing      mechanical properties      electron beam cooling bed smelting     
Received:  21 February 2022     
ZTFLH:  TG146.2+3  
Fund: National Natural Science Foundation of China(51975450)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.103     OR     https://www.cjmr.org/EN/Y2023/V37/I1/70

ComponentAlVFeCHO
Percentage (%, mass fraction)5.924.270.070.050.0040.4
Table 1  The main element content of Ti-6Al-4V alloy
Fig.1  Annealing heat treatment process diagram of TC4 titanium alloy
Fig.2  Schematic diagram of TC4 titanium alloy sampling
Fig.3  Microstructure of TC4 titanium alloy annealed at different temperatures (a) original rolling state; (b) annealing at 750℃; (c) annealing at 800℃ (d) annealing at 850℃; (e) annealing at 900℃
Fig.4  Recrystallization grain distribution map (a) original rolling state; (b) annealing at 750℃; (c) annealing at 800℃ (d) annealing at 850℃; (e) annealing at 900℃ (f) frequency of recrystallized grain distribution
Fig.5  Inverse pole figure (IPF) maps of TC4 titanium alloy annealed at different temperatures (a) original rolling state; (b) annealing at 750℃; (c) annealing at 800℃ (d) annealing at 850℃; (e) annealing at 900℃, (f) grain orientation distribution
Fig.6  Diagram of α grain Misorientation angle (a) original rolling state; (b) annealing at 750℃; (c) annealing at 800℃ (d) annealing at 850℃; (e) annealing at 900℃
Fig.7  Pole figures of TC4 titanium alloy at different annealing temperatures (a) original rolling state; (b) annealing at 750℃; (c) annealing at 800℃ (d) annealing at 850℃; (e) annealing at 900℃
Fig.8  Composition and position of important orientation of hexagonal close-packed metal on the ODF section of φ2=0° and φ2=30°
Fig.9  The ODF diagrams of TC4 titanium alloy at different annealing temperatures (a) original rolling state; (b) annealing at 750℃; (c) annealing at 800℃ (d) annealing at 850℃; (e) annealing at 900℃
Fig.10  Room temperature mechanical properties of TC4 titanium alloy at different annealing temperatures (a) variation trend of tensile strength and yield strength, (b) variation trend of elongation and shrinkage
Alloy gradeStateThickness of plate/mmRm/MPaRp0.2/MPaA/%
TC4M0.8~2.0≥895≥83012
>2.0~5.010
>5.0~10.010
10.0~25.08
Table 2  Room temperature mechanical properties of standard TC4 titanium alloy sheet
Fig.11  High temperature mechanical properties of TC4 titanium alloy at different annealing temperature (a) variation trend of tensile strength and yield strength, (b) variation trend of elongation and shrinkage, (c) stress-strain curve of sample of RD direction, (d) stress-strain curve sample of TD direction
Alloy gradeThickness of plate/mmTemperature/℃Rm/MPa
TC40.8~10400≥590
Table 3  High temperature mechanical properties of standard TC4 titanium alloy sheet
1 Xu J W, Zeng W D, Zhou D D, et al. Evolution of coordination between α and β phases for two-phase titanium alloy during hot working [J]. T. Nonferr. Metal. Soc., 2021, 31(11): 3428
doi: 10.1016/S1003-6326(21)65740-0
2 Xu G D, Wang F E. Development and application of high temperature titanium alloy [J]. Rare Met, 2008, 32(06): 774
许国栋, 王凤娥. 高温钛合金的发展和应用 [J]. 稀有金属, 2008, 32(06): 774
3 Li W, Gao N, Zhao H, et al. Crack initiation and early growth behavior of TC4 titanium alloy under high cycle fatigue and very high cycle fatigue [J]. Journal of Materials Research, 2018, 33(8): 1
doi: 10.1557/jmr.2017.478
4 Wang F Q, Wang X J, Bin D U, et al. Vacuum system design of electron beam cold hearth furnace for titanium and titanium alloy [J]. Vacuum, 2018
5 Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloys and Their Applications [M]. Chemical Industry Press, 2005
张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 化学工业出版社, 2005
6 Gupta R K, Kumar V A, Raj J N, et al. Hot Deformation Studies on β0 Stabilized TiAl Alloy Made Through Ingot Metallurgy Route [J]. Transactions of the Indian Institute of Metals, 2021
7 Yang Z, Cao J, Yu W, et al. Effects of microstructure characteristics on the mechanical properties and elastic modulus of a new Ti-6Al-2Nb-2Zr-0.4B alloy [J]. Materials Science and Engineering A, 2021, 820: 141564
doi: 10.1016/j.msea.2021.141564
8 Miao P, Li Q. Research progress of TC4 titanium alloy by electron beam melting [J]. Nonferrous Met. Mater. Eng., 2019, 40(6): 41
9 Jardy A. Thermal behavior of Ti-64 primary material in electron beam melting process [J]. Materials, 2021, 14(11): 2853
doi: 10.3390/ma14112853
10 Lei W G, Zhao Y Q, Han D, et al. Development status of titanium and titanium alloy melting technology [J]. MR, 2016, 30(05): 101
雷文光, 赵永庆, 韩 栋 等. 钛及钛合金熔炼技术发展现状 [J]. 材料导报, 2016, 30(05): 101
11 Zhang H Z, Huang H G, Wang W, et al. Volatilization loss of Al Element during electron beam cooling bed melting of Ti-Al-V alloy [J]. Rare Met. Mater. Eng, 2021, 50(07): 2415
张浩泽, 黄海广, 王 伟 等. 电子束冷床熔炼Ti-Al-V合金过程中Al元素的挥发损失 [J]. 稀有金属材料与工程, 2021, 50(07): 2415
12 Li Y X, Yang L C. 3150KWB BMO-01 high-power electron beam cooling bed furnace for melting TC4 titanium alloy [J]. Nonferrous Metals, Extractive Metallurgy, 2017(3): 4
李育贤, 杨丽春. 3150KWB BMO-01型大功率电子束冷床炉熔炼TC4钛合金 [J]. 有色金属: 冶炼部分, 2017(3): 4
13 Lei W G, Yu L L, Mao X N, et al. Numerical simulation of solidification process of continuous casting of TC4 titanium alloy melted by electron beam cooling bed [J]. Chin. J. of Nonferrous Met, 2010, 20(S1): 381
雷文光, 于兰兰, 毛小南 等. 电子束冷床熔炼TC4钛合金连铸凝固过程数值模拟 [J]. 中国有色金属学报, 2010, 20(S1): 381
14 Lei W G, Yu L L, Mao X N, et al. Mathematical model of Al volatilization loss during electron beam cooling bed smelting of TC4 titanium alloy [J]. Spec. Cast. Nonferrous Alloys, 2010, 30(11): 1048
雷文光, 毛小南, 于兰兰 等. TC4钛合金电子束冷床熔炼过程中Al元素挥发损失的数学模型 [J]. 特种铸造及有色合金, 2010, 30(11): 1048
15 Mao X N, Luo L, Yu L L, et al. Effect of electron beam cooling bed melting process parameters on the volatilization of Al element in TC4 titanium alloy [J]. Chin. J. of Nonferrous Met, 2010, 20(S1): 419
毛小南, 罗 雷, 于兰兰 等. 电子束冷床熔炼工艺参数对TC4钛合金Al元素挥发的影响 [J]. 中国有色金属学报, 2010, 20(S1): 419
16 Peng B. B., et al. Simulation study on temperature field and microstructure of Ti-6Al-4V alloy round ingot during EBCHM [J]. Materials Research Express 8. 4(2021): 046505
17 Liu Q, Li X, Jiang Y. Numerical simulation of EBCHM for the large-scale TC4 alloy slab ingot during the solidification process [J]. Vacuum, 2017, 141: 1
doi: 10.1016/j.vacuum.2017.03.009
18 Zhao S, Xiao H, Qin T C, et al. Microstructure and properties of TC4 titanium alloy hot-rolled sheet smelted in EB furnace [J]. Rare Met. Mater. Eng, 2019, 48(12): 4053
赵 帅, 肖 寒, 秦铁昌 等. EB炉熔炼TC4钛合金热轧板材的组织性能 [J]. 稀有金属材料与工程, 2019, 48(12): 4053
19 Akhonin S V, Trigub N P, Zamkov V N, et al. Mathematical modeling of aluminum evaporation during electron-beam cold-hearth melting of Ti6Al4V ingots [J]. Metall. Mater. Trans. B., 2003, 34(4): 447
20 Mo W, Wang Q J, Zhang Z. Metallology and Heat Treatment of Titanium [M]. Beijing: Metallurgical Industry Press, 2009
莫 畏, 王群娇, 张 翥. 钛的金属学和热处理 [M]. 北京: 冶金工业出版社, 2009
21 Wang J Y, Ge Z M, Zhou Y B, et al. Titanium Alloy for Aviation [M]. Shanghai: Shanghai Science and Technology Press, 1984
王金友, 葛志明, 周彦邦 等. 航空用钛合金 [M]. 上海: 上海科学技术出版社, 1984
22 Guo P, Zhao Y Q, Zeng W D. Effect of heat treatment in two-phase region on fracture toughness of TC4-DT titanium alloy [J]. Rare Met. Mater. Eng, 2018, 47(04): 1221
郭 萍, 赵永庆, 曾卫东. 两相区热处理对TC4-DT钛合金断裂韧性的影响 [J]. 稀有金属材料与工程, 2018, 47(04): 1221
23 Feng Q Y, Zhang Lei, Pang H, et al. Microstructure and properties of low-cost TC4 titanium alloy sheet [J]. Heat Treat. Met, 2016, 41(06): 85
冯秋元, 张 磊, 庞 洪 等. 低成本TC4钛合金板材的组织和性能 [J]. 金属热处理, 2016, 41(06): 85
24 Wang F Q, Wang D Y. Influence of heat treatment on mechanical properties of TC4 titanium alloy sheet for aviation [J]. T'ai Kung Yeh Chin Chan, 2017, 34(02): 24
王富强, 王德勇. 热处理对航空用TC4钛合金薄板力学性能影响研究 [J]. 钛工业进展, 2017, 34(02): 24
25 Xu W J, Tan Y Q, Gong L H, et al. Effects of annealing temperature and cooling rate on microstructure and properties of TC4 titanium alloy [J]. Rare Met. Mater. Eng, 2016, 45(11): 2932
徐戊矫, 谭玉全, 龚利华 等. 退火温度和冷却速率对TC4钛合金组织和性能的影响 [J]. 稀有金属材料与工程, 2016, 45(11): 2932
26 Zhang Q, Li B B, Pei T, et al. Effect of annealing temperature on microstructure and properties of low-cost TC4 titanium alloy wide and thick plate melted by EB [J]. Heat Treat. Met, 2020, 45(10): 73
张 强, 李渤渤, 裴 腾 等. 退火温度对EB熔炼低成本TC4钛合金宽厚板组织和性能的影响 [J]. 金属热处理, 2020, 45(10): 73
27 Lei W G, Han D, Zhang Y Q. Effects of different heat treatment processes on microstructure and properties of TC4-DT titanium alloy bars [J]. MR, 29(14): 120
雷文光, 韩 栋, 张永强 等. 不同热处理工艺对TC4-DT钛合金棒材组织和性能的影响 [J]. 材料导报, 2015, 29(14): 120
28 Kamali H, Xie H, Bi H, et al. Deformation mechanism and texture evolution of a low-Ni Cr-Mn-N austenitic stainless steel under bending deformation [J]. Mat. Sci. Eng. A-Struct., 2020, 804(10-11): 140724
doi: 10.1016/j.msea.2020.140724
29 Liu C M, Liu Z J, Zhu X R, et al. Research progress on dynamic recrystallization of magnesium and magnesium alloys [J]. Chin. J. of Nonferrous Met, 2006(01): 1
刘楚明, 刘子娟, 朱秀荣 等. 镁及镁合金动态再结晶研究进展 [J]. 中国有色金属学报, 2006(01): 1
30 Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Mater. Chem. Phys., 2003, 81: 11
doi: 10.1016/S0254-0584(03)00168-8
31 Yang Y, Huang A J, Ji B, et al. Variant Selection of βα Phase Transformation in Titanium Alloys [C]. CNIA-TI, 2014
杨 义, 黄爱军, 计 波 等. 钛合金βα相变的变体选择 [C]. 中国有色金属工业协会钛锆铪分会会, 2014
32 Li W Y, Liu J R, Chen J Y, et al. Relationship between room temperature strength and microstructure and texture of Ti60 alloy sheet [J]. J. Mater. Res., 2018, 32(06): 455
李文渊, 刘建荣, 陈志勇 等. Ti60合金板材的室温强度与其显微组织和织构的关系 [J]. 材料研究学报, 2018, 32(06): 455
33 Warwick J. L. W., Jones N. G., Bantounas I., Preuss M., Dye D.. In situ observation of texture and microstructure evolution during rolling and globularization of Ti-6Al-4V [J]. Acta. Mater., 2013, 61(5): 1603
doi: 10.1016/j.actamat.2012.11.037
34 Jiang H T, Dong P, Zeng S W, et al. Effects of recrystallization on microstructure and texture evolution of cold-rolled Ti-6Al-4V alloy [J]. Springer US, 2016, 25(5): 1931
35 Huang X S, Suzuki. K, Chino. Y. Static recrystallization behavior of hot-rolled Mg-Zn-Ce magnesium alloy sheet [J]. J. Alloy. Compd., 2017, 724: 981
doi: 10.1016/j.jallcom.2017.07.093
36 Mao W M, Yang P, Chen L. Material Texture Analysis Principle and Detection Technology [M]. Beijing: Metallurgical Industry Press, 2008
毛卫民, 杨 平, 陈 冷. 材料织构分析原理与检测技术 [M]. 北京: 冶金工业出版社, 2008
37 Guo T B, Ding Y T, Yuan X F, et al. Grain orientation evolution and texture fluctuation effect of pure copper during equal channel angular extrusion [J]. Chin. J. of Nonferrous Met, 2011, 21(02): 384
郭廷彪, 丁雨田, 袁训锋 等. 等通道角挤压中纯铜的晶粒取向演变及织构起伏效应 [J]. 中国有色金属学报, 2011, 21(02): 384
38 Dang P, Gao W N, Fu W J, et al. Effect of heat treatment on microstructure and properties of TC4 sheet [J]. Hot Working Technology, 2014, 43(18): 190
党 鹏, 高维娜, 付文杰 等. 热处理对TC4薄板组织与性能的影响 [J]. 热加工工艺, 2014, 43(18): 190
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
No Suggested Reading articles found!