Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (3): 235-240    DOI: 10.11901/1005.3093.2021.448
ARTICLES Current Issue | Archive | Adv Search |
Anisotropy of 2060 Al-Li Alloy Thick Plate
LIU Dongyang1, TONG Guangzhe1, GAO Wenli1(), WANG Weikai2
1.College of Materials Science and Engineering, Hunan University, Changsha 410082, China
2.AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
Cite this article: 

LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate. Chinese Journal of Materials Research, 2023, 37(3): 235-240.

Download:  HTML  PDF(9089KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The anisotropy of microstructure and mechanical properties of 2060 Al-Li alloy thick plate was investigated by OM, TEM, EBSD and tensile properties at room temperature. The main results are as follows: 1) The strength in 0° direction is the highest, the elongation and the section shrinkage are lower; The strength in 45° direction is the lowest, but the elongation and the section shrinkage are the highest; The strength in 90° direction is slightly lower than 0° direction, and the elongation and section shrinkage are the lowest. 2) The main precipitated phase of the alloy in the directions of 0°, 45° and 90° is T1 phase, and θ' phase and a small amount of spherical δ' phase are also found in 0° and 45° directions. In the direction of 0°, the number of precipitated phases is the largest and the distribution is uniform. In the direction of 45°, the size of precipitated phases is large, and most of THE T1 phase is coarse and flake. In the direction of 90°, the number of precipitated phases is relatively small, but the size of T1 phase is significantly smaller than that in the direction of 45°. 3) 2060 Al-Li alloy thick plate has the highest texture strength at 45° direction, and a strong recrystallization texture P{011}<122> appears.The texture strength is still high in the direction of 0°, mainly recrystallized P{011}<122>, there is also a weak deformation texture copper {112} <111>; The texture strength in the 90° direction is relatively weak, and the deformation texture Copper {112}<111> and deformation texture S{123}<634> are the main textures.

Key words:  metallic materials      anisotropy      mechanical properties      microstructure      texture     
Received:  13 August 2021     
ZTFLH:  TG146.2+1  
Corresponding Authors:  GAO Wenli, Tel: 13873110708, E-mail: wenligaohd@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.448     OR     https://www.cjmr.org/EN/Y2023/V37/I3/235

ElementCuLiMgAgMnZrZnAl
Proportion3.751.150.750.30.250.120.32Bal
Table 1  Measured composition of 2060 Al-Li alloy (%, mass fraction)
Fig.1  Sampling diagram and standard tensile test bar size diagram (unit: mm)
Sample No.σb / MPaσ0.2 / MPaδ / %Z/%
IPA /%4.39.022.436.2
626.3605.38.816.4
45°580528.79.622.9
90°618.7573.36.112.8
Table 2  Room temperature tensile properties of 2060 Al-Li alloy in different directions
Fig.2  Metallographic structure of 2060 alloy in different directions (a) 0°, (b) 45°, (c) 90°
Fig.3  TEM microstructure and scanning pictures of 2060 Al-Li alloy in different directions (a) 0°, (b) 45°, (c) 90°, (d) 0°-STEM, (e) 45°-STEM and (f) 90°-STEM
Fig.4  (001), (111) and (110) pole diagrams of thick plate in different directions (a) 0°, (b) 45°, (c) 90°
1 Yang S J, Lu Z, Su B, et al. Research progress of Al-Li alloy [J]. Materials Engineering, 2001, (5): 44.
杨守杰, 陆 政, 苏 彬 等. 铝锂合金研究进展 [J]. 材料工程, 2001, (5): 44
2 Garmestani H., Kalidindi S. R., Williams L., et al. Modeling the evolution of anisotropy in Al-Li alloys: application to Al-Li 2090-T8E41 [J]. International Journal of Plasticity, 2002, 18: 1373
doi: 10.1016/S0749-6419(01)00073-0
3 El-Aty A A, Yong X, Guo X, et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review [J]. Journal of Advanced Research, 2018, 10(C): 49
doi: 10.1016/j.jare.2017.12.004
4 Zhao Z L, Chen Z, Liu L. The effect of precipitates on anisotropy of Al-Li alloys 2090 and 2090+Ce [J]. Advanced Materials Research, 2010, 97-101: 496
doi: 10.4028/www.scientific.net/AMR.97-101
5 Cho K K, Kwun S I, Chung Y H, et al. Effects of grain shape and texture on the yield strength anisotropy of Al-Li alloy sheet [J]. Scripta Materialia, 1999, 40(6): 651
doi: 10.1016/S1359-6462(98)00481-3
6 Wu Z, Lu Z, Liu S G, et al. Effect of trace Ag on microstructure and mechanical properties of ZL114A aluminum alloy [J]. Materials Engineering, 2021, 49 (1): 82.
吴 桢, 陆 政, 刘闪光 等. 微量Ag对ZL114A铝合金组织和力学性能的影响 [J]. 材料工程, 2021, 49(1): 82
7 Jata K V, Hopkins A K, Rioja R J. The anisotropy and texture of Al-Li alloys [J]. Materials Science Forum, 1996, 217-222: 647
doi: 10.4028/www.scientific.net/MSF.217-222
8 Liu Z Y, Deng X T, Wang Y Z. Effect of pulsed current on dynamic recrystallization kinetics of 2091 Al-Li alloy [J]. Chinese Journal of Materials Research, 2001, 15(3): 358
刘志义, 邓小铁, 王引真. 脉冲电流对2091铝锂合金动态再结晶动力学的影响 [J]. 材料研究学报, 2001, 15(3): 358
9 Mahalingam K, Gu B P, Liedl G L, et al. Coarsening of δ'(Al3Li) precipitates in binary Al-Li alloys [J]. Acta Metallurgica, 1987, 35(2): 483
doi: 10.1016/0001-6160(87)90254-9
10 Wu Y, Wang G Z, Song Z J, et al. Effect of aging treatment on microstructure and properties of rapidly solidified Al-Li-Cu and Al-Li-Cu-Zr alloys [J]. Chinese Journal of Materials Research, 1993, 7(4): 298
吴 越, 王国志, 宋治鉴 等. 时效处理对快速凝固Al-Li-Cu及Al-Li-Cu-Zr合金结构与性能的影响 [J]. 材料研究学报, 1993, 7(4): 298
11 Xu J. Microstructure evolution and mechanical properties of 2A66 Al-Li alloy by reciprocating upsetting and extrusion [D]. Changsha: Hunan University, 2016
许 娟. 往复镦2A66铝锂合金的组织演变及力学性能研究 [D]. 长沙: 湖南大学, 2016
12 Lei W, Liu X, Wang W, et al. On the influences of Li on the microstructure and properties of hypoeutectic Al-7Si alloy [J]. Journal of Alloys & Compounds, 2017: S0925838817315177
13 Li H Y, Ou L, Zheng Z Q. Anisotropy of 2195 Al-Li alloy [J]. Materials Engineering, 2005, (10): 31
李红英, 欧 玲, 郑子樵. 2195 铝锂合金各向异性研究 [J]. 材料工程, 2005, (10): 31
14 Zheng X F, Lu Z, Gao W L, et al. Study on anisotropy of 2A66 aluminum-lithium alloy sheet [J]. Materials Engineering, 2017, 45(7): 7
张显峰, 陆 政, 高文理 等. 2A66 铝锂合金板材各向异性研究 [J]. 材料工程, 2017, 45(7): 7
15 Fan C P, Zheng Z Q, Jia M, et al. Microstructure, tensile properties and fracture toughness of 2397 Al-Li alloy [J]. Rare Metal Materials and Engineering, 2015, 44(1): 91
范春平, 郑子樵, 贾 敏 等. 2397 铝锂合金显微组织、拉伸性能和断裂韧性研究 [J]. 稀有金属材料与工程, 2015, 44(1): 91
16 Wang J T. Study on anisotropy and fatigue properties of 2297-T87 Al-Li alloy thick plate [D]. Changsha: Hunan University, 2018
王俭堂. 2297-T87铝锂合金厚板各向异性和疲劳性能研究 [D]. 长沙: 湖南大学, 2018
17 Li G A, Wang L, Hao M, et al. Microstructure and fatigue damage behavior of 2060 Al-Li alloy sheet [J]. Journal of Northwest University of Technology, 2020, 38(2): 161
李国爱, 王 亮, 郝 敏 等. 2060铝锂合金薄板组织特征及疲劳损伤行为 [J]. 西北工业大学学报, 2020, 38(2): 161
18 Zhao Z L, Liu L, Chen Z. Co-strengthening contribution of δ' and T1 phases of Al-Li alloy 2090 [J]. Chinese Journal of Nonferrous Metals, 2006, 16(1): 89
赵志龙, 刘 林, 陈 铮. 2090 铝锂合金中δ'相和T1相的复合强化作用 [J]. 中国有色金属学报, 2006, 16(1): 89
19 Torre F H D, Gazder A A, Gu C F, et al. Grain size, misorientation, and texture evolution of copper processed by equal channel angular extrusion and the validity of the Hall-Petch relationship [J]. Metallurgical & Materials Transactions A, 2007, 38(5): 1080
20 Cao Y L. Study on heat treatment process and anisotropy of 2A66 aluminum-lithium alloy [D]. Changsha: Hunan University, 2015
曹亚雷. 2A66铝锂合金热处理工艺及其各向异性的研究 [D]. 长沙: 湖南大学, 2015
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!