Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (11): 834-842    DOI: 10.11901/1005.3093.2018.277
Orginal Article Current Issue | Archive | Adv Search |
Effects of Grain Size on Fatigue Properties of K492 Superalloy
Zhiyuan LIU1, Yongjun LIU1, Peng LIU2,3, Chuanyong CUI2()
1 China Aviation Development Hunan Institute of Power Machinery, Zhuzhou 412002, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Cite this article: 

Zhiyuan LIU, Yongjun LIU, Peng LIU, Chuanyong CUI. Effects of Grain Size on Fatigue Properties of K492 Superalloy. Chinese Journal of Materials Research, 2018, 32(11): 834-842.

Download:  HTML  PDF(11051KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effects of grain size on the fatigue properties of Ni-base superalloy K492 at 700℃ and 800℃ with various grain sizes were investigated. The fatigue fracture mechanism is analyzed by scanning electron microscopy and transmission electron microscopy. The results show that grain refinement improves the fatigue properties of K492 at 700℃ and 800℃. For high-cycle fatigue (HCF) at 700℃, fatigue cracks occur at the metallurgical defect or at a certain crystal plane. The distribution of dislocation configuration is band-like and the morphology of γ' phase does not change. The dislocations pass through the γ' phase by shearing or Orowan loops passing. For HCF at 800℃ the fatigue cracks generated at the defects. In some regions the morphology of dislocation configuration was similar to that at 700℃ HCF and the morphology of γ' phase does not change; In the other region, the γ' phase rafts and dislocations distribute in the matrix channel, and the γ' phase loses the pinning effect of dislocations. For low-cycle fatigue (LCF) at 700℃, fatigue cracks mainly originate from the surface. For LCF at 800℃, fatigue cracks mainly occur at the secondary surface or at a certain crystal plane.

Key words:  metallic materials      superalloy      grain refinement      fatigue property      dislocation configuration      fracture mechanism     
Received:  18 April 2018     
ZTFLH:  TG146  
Fund: Supported by National Natural Science Foundation of China (No. 51671189)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.277     OR     https://www.cjmr.org/EN/Y2018/V32/I11/834

Fig.1  Grain distribution of the as-cast state samples with two different grain sizes (a) coarse-grained samples, (b) fine-grained samples
Fig.2  Microstructures of the samples with two different grain size after heat treatment (a) (b) (c) the γ' phase, carbide and eutectic structure of the coarse-grained samples, (d) (e) (f) The γ' phase, carbide and eutectic structure of the fine-grained samples
Fig.3  Porosities distribution in the specimens
Fig.4  High-cycle S-N curve of the two specimens tested at 700℃ (a) and 800℃ (b) in the double logarithmic coordinate (Nf—Number of cycles to failure)
700℃ 800℃
σf'/MPa b σf'/MPa b
Coarse-grained 853 -0.082 1241 -0.104
Fine-grained 855 -0.04 902 -0.07
Table 1  High cycle fatigue parameters of K492 alloy at different temperatures for coarse-grained and fine-grained specimens
Fig.5  Porosities in the subsurface of the sample (a) the fracture surface of the coarse-grained samples after the 700℃ HCF experiments, (b) the fracture surface of the coarse-grained samples after the 800℃ HCF experiments
Fig.6  Fatigue cracks formed in the crystal surface in the sample (a) the fracture surface of the coarse-grained samples after the 700℃ HCF experiments, (b) the fracture surface of the fine-grained samples after the 700℃ HCF experiments
Fig.7  Dislocation configurations of the fine-grained K492 samples after the HCF test at different temperatures (a) (b) (c) at 700℃; (d) (e) (f) at 800℃
Fig.8  Cyclic stress response curves of the two specimens under various total strain tested at 700℃
Fig.9  Cyclic stress response curves of the two specimens under various total strain tested at 800℃
Fig.10  Fatigue cracks in the sample after the 700℃ LCF experiments (a) (b) the fracture surface of the coarse-grained samples, (c) (d) the fracture surface of the fine-grained samples
Fig.11  The fatigue cracks in the sample after the 800℃ LCF experiments (a) (b) the fracture surface of the coarse-grained samples, (c) (d) the fracture surface of the fine-grained samples
[1] Almroth P, Hasselqvist M, Sjostrom S.Modeling of the high temperature behaviour of IN792 in gas turbine hot parts[J]. Computational Materials Science, 2002, 25(3): 305
[2] Yang J X, Zheng Q, Zhang H Y.Effects of heat treatments on the microstructure of IN792 alloy[J]. Materials Science and Engineering: A, 2010, 527(4-5): 1016
[3] Kanesund J, Moverare J, Johansson S.The deformation and damage mechanisms during thermomechanical fatigue (TMF) in IN792[J]. Procedia Engineering, 2011, 10: 189
[4] Soboyejo A B O, Mercer C, Soboyejo W O. Micromechanisms of fatigue crack growth in a forged Inconel 718 nickel-based superalloy[J]. Materials Science and Engineering: A, 1999, 270: 308
[5] Liu X L, Sun C Q, Zhou Y T.Effects of microstructure and stress ratio on high-cycle and very-high-cycle fatigue behavior of ti-6a1-4v alloy[J]. Acta Metallurgica Sinica, 2016, 52(8): 623(刘小龙, 孙成奇, 周砚田. 微结构和应力比对Ti-6A1-4V高周和超高周疲劳行为的影响[J]. 金属学报, 2016, 52(8): 623)
[6] Xie J, Yu J J, Sun X F.High-cycle fatigue behavior of K416B Ni-based casting superalloy at 700℃[J]. Acta Metallurgica Sinica, 2016, 52(3): 257(谢君, 于金江, 孙晓峰. K416B镍基铸造高温合金的700℃高周疲劳行为[J]. 金属学报, 2016, 52(3): 257)
[7] Teng Y F, Li Y J, Feng X H.Effect of rectangle aspect ratio on grain refinement of superalloy K4169 under pulsed magnetic field[J]. Acta Metallurgica Sinica, 2015, 51(7): 844(滕跃飞, 李应举, 冯小辉. 脉冲磁场作用下矩形截面宽厚比对K4169高温合金晶粒细化的影响[J]. 金属学报, 2015, 51(7): 844)
[8] Kim S H, Lee J U, Kim Y J.Accelerated precipitation behavior of cast Mg-Al-Zn alloy by grain refinement[J]. Journal of Materials Science and Technology, 2018, 2(34): 265
[9] Yang J X, Sun Y, Jin T.Microstructure and mechanical properties of a Ni-based superalloy with refined grains[J]. Acta Metallurgica Sinica, 2014, 50(7): 839(杨金侠, 孙元, 金涛. 一种细晶铸造镍基高温合金的组织与力学性能, 金属学报, 2014, 50(7): 839)
[10] Hou F, Li J K, Xie S X.Very high cycle fatigue properties of CrMoW rotor steelat high-temperature[J]. Chinese Journal of Materials Research, 2016, 30(7): 481(侯方, 李久楷, 谢少雄. CrMoW转子钢的高温超高周疲劳性能[J]. 材料研究学报, 2016, 30(7): 481)
[11] Zhang Y J, Hui W J, Xiang J Z.Effect of grain size on ultra-high-cyclefatigue properties of 42CrMoVNb steel[J]. Acta Metallurgica Sinica, 2009, 45(7): 880(张永健, 惠卫军, 项金钟. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45(7): 880)
[12] Liu L, Huang T W, Xiong Y H.Grain refinement of superalloy K4169 by addition of refiners: cast structure and refinement mechanisms[J]. Materials Science and Engineering: A, 2005, 394(1): 1
[13] Wei C N, H. Y. Bor, C. Y. Ma. A study of IN-713LC superalloy grain refinement effects on microstructure and tensile properties[J]. Materials Chemistry and Physics, 2003, 80(1): 89
[14] Kunz L, Luká? P, Kone?ná R.Casting defects and high temperature fatigue life of IN 713LC superalloy[J]. International Journal of Fatigue, 2012, 41(0): 47
[15] Kunz L, Luká? P, Kone?ná R.High-cycle fatigue of Ni-base superalloy Inconel 713LC[J]. International Journal of Fatigue, 2010, 32(6): 908
[16] Kunz L, Luká? P, Kone?ná R.Initiation and propagation of fatigue cracks in cast IN 713LC superalloy[J]. Engineering Fracture Mechanics, 2010, 77(11): 2008
[17] Shi Z X, Li J R, Liu S Z.High cycle fatigue behavior of the second generation single crystal superalloy DD6[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(5): 998
[18] Chu Z K, Yu J J, Sun X F.High cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ951[J]. Materials Science and Engineering: A, 2008, 496(1-2): 355
[19] Liu Y, Yu J J, Xu Y B. High cycle fatigue behavior of a single crystal superalloy at elevated temperatures [J]. Materials Science and Engineering: A , 2007,454-455: 357
[20] Cui Y X, Wang C L.Metal Fracture Analysis [M]. Harbin:Harbin Institute of Technology Press, 1998(崔约贤, 王长利. 金属断口分析 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1998)
[21] Cai Q K.Metal Fatigue Fracture Theory [M]. Shenyang: Northeastern Institute of Technology Press, 1989(才庆魁. 金属疲劳断裂理论 [M]. 沈阳: 东北工学院出版社, 1989)
[22] Chen G L.Superalloys [M]. Beijing: Metallurgical Industry Press, 1988(陈国良. 高温合金学[M]. 北京: 冶金工业出版社, 1988)
[23] Pang H T, Reed P A S. Fatigue crack initiation and short crack growth in nickel-base turbine disc alloys—the effects of microstructure and operating parameters[J]. International Journal of Fatigue, 2003, 25(9): 1089
[24] Yang A M.Study of Structure Refinement and Optimization of Mechanical Proprieties for Superalloy K4169 [D]. Xian: Northwestern Polytechnical University, 2002(杨爱民. K4169高温合金组织细化及性能优化研究 [D]. 西安: 西北工业大学, 2002)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!