|
|
Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi |
SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng( ) |
School of Materials and Energy, Southwest University, Chongqing 400715, China |
|
Cite this article:
SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi. Chinese Journal of Materials Research, 2023, 37(6): 443-452.
|
Abstract A new refractory medium-entropy alloy of CrTaTi has been successfully developed through the reasonably composition design, and the room-temperature mechanical properties and high-temperature oxidation resistance of the alloy were systematically investigated in this paper. The results show that the as-cast alloy is composed of bcc phase matrix and a small amount of Cr2Ta Laves phase. The solid solution strengthening and precipitation strengthening make the alloy with good comprehensive mechanical properties at room-temperature. During the short-term oxidation test at medium- and high-temperatures a composite oxide scale containing TiO2 and Cr2O3 preferentially formed on the alloy surface, showing excellent oxidation resistance. The oxidation weight gain of CrTaTi alloy is only 8.4 mg/cm2 after oxidation in air at 1000℃ for 10 h.
|
Received: 20 July 2022
|
|
Fund: National Natural Science Foundation of China(52071276) |
Corresponding Authors:
GUO Shengfeng, Tel: 13500330725, E-mail: sfguo@swu.edu.cn
|
1 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6(5): 299
doi: 10.1002/(ISSN)1527-2648
|
2 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375C: 213
|
3 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
|
4 |
Fu W J, Huang Y J, Sun J F, et al. Strengthening CrFeCoNi-Mn0.75Cu0.25 high entropy alloy via laser shock peening [J]. Int. J. Plast., 2022, 154: 103296
doi: 10.1016/j.ijplas.2022.103296
|
5 |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153
doi: 10.1126/science.1254581
pmid: 25190791
|
6 |
Senkov O N, Senkova S V, Dimiduk D M, et al. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy [J]. J. Mater. Sci., 2012, 47: 6522
doi: 10.1007/s10853-012-6582-0
|
7 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
|
8 |
Guo Z M, Zhang A J, Han J S, et al. Microstructure, mechanical and tribological properties of CoCrFeNiMn high entropy alloy matrix composites with addition of Cr3C2 [J]. Tribol. Int., 2020, 151: 106436
doi: 10.1016/j.triboint.2020.106436
|
9 |
Kumar N A P K, Li C, Leonard K J, et al. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation [J]. Acta Mater., 2016, 113: 230
doi: 10.1016/j.actamat.2016.05.007
|
10 |
Zhang W, Wang M, Wang L, et al. Interface stability, mechanical and corrosion properties of AlCrMoNbZr/(AlCrMoNbZr)N high-entropy alloy multilayer coatings under helium ion irradiation [J]. Appl. Surf. Sci., 2019, 485: 108
doi: 10.1016/j.apsusc.2019.04.192
|
11 |
Jayaraj J, Thinaharan C, Ningshen S, et al. Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium [J]. Intermetallics, 2017, 89: 123
doi: 10.1016/j.intermet.2017.06.002
|
12 |
Hua X J, Hu P, Xing H R, et al. Development and property tuning of refractory high-entropy alloys: a review [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1231
doi: 10.1007/s40195-022-01382-x
|
13 |
Lv Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54(11): 1553
doi: 10.11900/0412.1961.2018.00372
|
|
吕昭平, 雷智锋, 黄海龙 等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54(11): 1553
doi: 10.11900/0412.1961.2018.00372
|
14 |
Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
doi: 10.1016/j.intermet.2010.05.014
|
15 |
Du Y H, Ding D Y, Guo N, et al. The progress of high-entropy alloys with the functional properties [J]. Mater. Rev., 2021, 35(17): 17051
|
|
杜宇航, 丁德渝, 郭 宁 等. 高熵合金功能特性研究进展 [J]. 材料导报, 2021, 35(17): 17051
|
16 |
Chang C H, Titus M S, Yeh J W. Oxidation behavior between 700 and 1300 C of refractory TiZrNbHfTa high-entropy alloys containing aluminum [J]. Adv. Eng. Mater., 2018, 20(6): 1700948
doi: 10.1002/adem.v20.6
|
17 |
Yan X H, Zhang Y. A body-centered cubic Zr50Ti35Nb15 medium-entropy alloy with unique properties [J]. Scripta Mater., 2020, 178: 329
doi: 10.1016/j.scriptamat.2019.11.059
|
18 |
Zhao Y L, Yang T, Tong Y, et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy [J]. Acta Mater., 2017, 138: 72
doi: 10.1016/j.actamat.2017.07.029
|
19 |
Sohn S S, Kim D G, Jo Y H, et al. High-rate superplasticity in an equiatomic medium-entropy VCoNi alloy enabled through dynamic recrystallization of a duplex microstructure of ordered phases [J]. Acta Mater., 2020, 194: 106
doi: 10.1016/j.actamat.2020.03.048
|
20 |
Wang H, He Q F, Yang Y. High-entropy intermetallics: from alloy design to structural and functional properties [J]. Rare Met., 2022, 41: 1989
doi: 10.1007/s12598-021-01926-7
|
21 |
Lv Z P, Jiang S H, He J Y, et al. Second phase strengthening in advanced metal materials [J]. Acta Metall. Sin., 2016, 52(10): 1183
|
|
吕昭平, 蒋虽合, 何骏阳 等. 先进金属材料的第二相强化 [J]. 金属学报, 2016, 52(10): 1183
|
22 |
Gorr B, Schellert S, Müller F, et al. Current status of research on the oxidation behavior of refractory high entropy alloys [J]. Adv. Eng. Mater., 2021, 23(5): 2001047
doi: 10.1002/adem.v23.5
|
23 |
Wang S P, Xu J. (TiZrNbTa)-Mo high-entropy alloys: dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening [J]. Intermetallics, 2018, 95: 59
doi: 10.1016/j.intermet.2018.01.017
|
24 |
Wang W, Zhang Z T, Niu J Z, et al. Effect of Al addition on structural evolution and mechanical properties of the Al x HfNbTiZr high-entropy alloys [J]. Mater. Today Commun., 2018, 16: 242
|
25 |
Zhang J, Hu Y Y, Wei Q Q, et al. Microstructure and mechanical properties of RexNbMoTaW high-entropy alloys prepared by arc melting using metal powders [J]. J. Alloys Compd., 2020, 827: 154301
doi: 10.1016/j.jallcom.2020.154301
|
26 |
Yang X, Zhang Y, Liaw P K. Microstructure and compressive properties of NbTiVTaAlx high entropy alloys [J]. Proc. Eng., 2012, 36: 292
doi: 10.1016/j.proeng.2012.03.043
|
27 |
Qiao D X, Jiang H, Jiao W N, et al. A novel series of refractory high‑entropy alloys Ti2ZrHf0.5VNb x with high specific yield strength and good ductility [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 925
doi: 10.1007/s40195-019-00921-3
|
28 |
Tsakiropoulos P. Alloys for application at ultra-high temperatures: Nb-silicide in situ composites: challenges, breakthroughs and opportunities [J]. Prog. Mater. Sci., 2022, 123: 100714
doi: 10.1016/j.pmatsci.2020.100714
|
29 |
Yao H W, Qiao J W, Gao M C, et al. NbTaV-(Ti,W) refractory high-entropy alloys: experiments and modeling [J]. Mater. Sci. Eng., 2016, 674A: 203
|
30 |
Lee C, Song G, Gao M C, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy [J]. Acta Mater., 2018, 160: 158
doi: 10.1016/j.actamat.2018.08.053
|
31 |
Feng R, Feng B J, Gao M C, et al. Superior high-temperature strength in a supersaturated refractory high-entropy alloy [J]. Adv. Mater., 2021, 33(48): 2102401
doi: 10.1002/adma.v33.48
|
32 |
Li Q Y, Zhang H, Li D C, et al. Comparative study of the microstructures and mechanical properties of laser metal deposited and vacuum arc melted refractory NbMoTa medium-entropy alloy [J]. Int. J. Refract. Met. Hard Met., 2020, 88: 105195
|
33 |
Wei Q Q, Shen Q, Zhang J, et al. Microstructure and mechanical property of a novel ReMoTaW high-entropy alloy with high density [J]. Int. J. Refract. Met. Hard Mater., 2018, 77: 8
doi: 10.1016/j.ijrmhm.2018.05.006
|
34 |
Waseem O A, Lee J, Lee H M, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials [J]. Mater. Chem. Phys., 2018, 210: 87
doi: 10.1016/j.matchemphys.2017.06.054
|
35 |
Butler T M, Chaput K J, Dietrich J R, et al. High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs) [J]. J. Alloys Compd., 2017, 729: 1004
doi: 10.1016/j.jallcom.2017.09.164
|
36 |
Gorr B, Mueller F, Christ H J, et al. High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition [J]. J. Alloys Compd., 2016, 688: 468
|
37 |
Butler T M, Chaput K J. Native oxidation resistance of Al20Nb30Ta10Ti30Zr10 refractory complex concentrated alloy (RCCA) [J]. J. Alloys Compd., 2019, 787: 606
doi: 10.1016/j.jallcom.2019.02.128
|
38 |
Gorr B, Azim M, Christ H J, et al. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys [J]. J. Alloys Compd., 2015, 624: 270
doi: 10.1016/j.jallcom.2014.11.012
|
39 |
Waseem O A, Auyeskhan U, Lee H M, et al. A combinatorial approach for the synthesis and analysis of Al x Cr y Mo z NbTiZr high-entropy alloys: oxidation behavior [J]. J. Mater. Res., 2018, 33(19): 3226
doi: 10.1557/jmr.2018.241
|
40 |
Xiao Y F, Kuang W H, Xu Y F, et al. Microstructure and oxidation behavior of the CrMoNbTaV high-entropy alloy [J]. J. Mater. Res., 2019, 34: 301
doi: 10.1557/jmr.2018.340
|
41 |
Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10(6): 534
doi: 10.1002/(ISSN)1527-2648
|
42 |
Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Mater. Chem. Phys., 2012, 132: 233
doi: 10.1016/j.matchemphys.2011.11.021
|
43 |
Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109(10): 103505
doi: 10.1063/1.3587228
|
44 |
Toda-Caraballo I, Rivera-Díaz-del-Castillo P E J. Modelling solid solution hardening in high entropy alloys [J]. Acta Mater., 2015, 85: 14
doi: 10.1016/j.actamat.2014.11.014
|
45 |
Warlimont H, Martienssen W. Springer Handbook of Materials Data [M]. 2nd ed. Cham: Springer, 2018
|
46 |
Von Nembach E. Particle Strengthening of Metals and Alloys [M]. New York: John Wiley & Sons, 1997
|
47 |
Raman L, Anupam A, Karthick G, et al. Strengthening mechanisms in CrMoNbTiW refractory high entropy alloy [J]. Mater. Sci. Eng., 2021, 819A: 141503
|
48 |
Georg F M. Thermodynamik Für Werkstoffwissenschaftler [M]. Weinheim: Leipzig, 2009
|
49 |
Müller F, Gorr B, Christ H J, et al. On the oxidation mechanism of refractory high entropy alloys [J]. Corros. Sci., 2019, 159: 108161
doi: 10.1016/j.corsci.2019.108161
|
50 |
Ren W L, Ouyang F F, Ding B, et al. The influence of CrTaO4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850~900℃ [J]. J. Alloys Compd., 2017, 724: 565
doi: 10.1016/j.jallcom.2017.07.066
|
51 |
Lo K C, Chang Y J, Murakami H, et al. An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide [J]. Sci. Rep., 2019, 9: 7266
doi: 10.1038/s41598-019-43819-x
|
52 |
Gorr B, Müller F, Schellert S, et al. A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures [J]. Corros. Sci., 2020, 166: 108475
doi: 10.1016/j.corsci.2020.108475
|
53 |
Huang D, Lu J S, Zhuang Y X, et al. The role of Nb on the high temperature oxidation behavior of CoCrFeMnNb x Ni high-entropy alloys [J]. Corros. Sci., 2019, 158: 108088
doi: 10.1016/j.corsci.2019.07.012
|
54 |
Xu L J, Zong L, Luo C Y, et al. Toughening pathways and regulatory mechanisms of refractory high-entropy alloys [J]. Acta Metall. Sin., 2022, 58(3): 257
doi: 10.11900/0412.1961.2021.00286
|
|
徐流杰, 宗 乐, 罗春阳 等. 难熔高熵合金的强韧化途径与调控机理 [J]. 金属学报, 2022, 58(3): 257
doi: 10.11900/0412.1961.2021.00286
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|