Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (6): 443-452    DOI: 10.11901/1005.3093.2022.403
ARTICLES Current Issue | Archive | Adv Search |
Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi
SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng()
School of Materials and Energy, Southwest University, Chongqing 400715, China
Cite this article: 

SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi. Chinese Journal of Materials Research, 2023, 37(6): 443-452.

Download:  HTML  PDF(14318KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A new refractory medium-entropy alloy of CrTaTi has been successfully developed through the reasonably composition design, and the room-temperature mechanical properties and high-temperature oxidation resistance of the alloy were systematically investigated in this paper. The results show that the as-cast alloy is composed of bcc phase matrix and a small amount of Cr2Ta Laves phase. The solid solution strengthening and precipitation strengthening make the alloy with good comprehensive mechanical properties at room-temperature. During the short-term oxidation test at medium- and high-temperatures a composite oxide scale containing TiO2 and Cr2O3 preferentially formed on the alloy surface, showing excellent oxidation resistance. The oxidation weight gain of CrTaTi alloy is only 8.4 mg/cm2 after oxidation in air at 1000℃ for 10 h.

Key words:  metallic materials      refractory medium entropy alloy      microstructure      room-temperature mechanical properties      high-temperature oxidation resistance     
Received:  20 July 2022     
ZTFLH:  TB31  
Fund: National Natural Science Foundation of China(52071276)
Corresponding Authors:  GUO Shengfeng, Tel: 13500330725, E-mail: sfguo@swu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.403     OR     https://www.cjmr.org/EN/Y2023/V37/I6/443

Fig.1  Calculated mole fraction of equilibrium phases at various temperatures for the CrTaTi (a) and XRD pattern of as-cast CrTaTi refractory medium-entropy alloy (b)
Fig.2  Backscattered SEM images of the as-cast CrTaTi refractory medium-entropy alloy (a) the overall microstructure of the alloy, (b) the interdendritic microstructure, with the presence of the Cr2Ta second phase in the interdendritic
AlloyRegionCrTaTi
CrTaTiDR29.642.428
ID40.122.637.3
Table 1  The chemical composition of dendrite and interdendritic regions of CrTaTi refractory medium-entropy alloy (atomic fraction, %)
Fig.3  Room-temperature compressive stress-strain curve of the as-cast CrTaTi refractory entropy alloy (a), the mechanical properties of the as-cast CrTaTi alloy and some typical refractory multi-principal element alloys previously reported[7,23~33] (b)
Fig.4  Appearance changes (a) and the changes of mass gain (b) of samples after isothermal oxidation at different temperatures with different times, respectively
Alloy compositionWeight gain /mg·cm-2Ref.Alloy compositionWeight gain /mg·cm-2Ref.
CrTaTi0.932This workAlNb1.5Ta0.5Ti1.5Zr0.510[37]
CrTaVW30[34]AlCrMoTiW3.8[38]
CrMo0.5NbTa0.5TiZr110[36]AlCr0.5Mo0.5NbTiZr21[39]
CrNbTiZr25[35]Al0.5Mo1.5NbTiZr20[39]
NbTiVZr100[35]AlCrNbTiZr39[39]
AlCrMoNbTi0.8[36]CrMoNbTaV13[40]
Table 2  Oxidation weight gain of typical refractory multi-component alloys after oxidation at 1000℃ for 3 h
AlloyΔSmixΔHmixδΩΔXVEC
CrTaTi9.13-5.86.723.856.805
Table 3  Mixing entropy (ΔSmix), mixing enthalpy (ΔHmix), the atomic radius (δ), parameter Ω, electronegativity difference (ΔX), Valence electron concentration (VEC) of the CrTaTi refractory high-entropy alloy
AlloyCrTaTi
μ/GPa64.771.637.3
r/pm125143146
Table 4  The shear modulus (μ) and atomic radius (r) of Cr, Ta and Ti elements[45]
Fig.5  XRD pattern of the oxidation products on the sample surface after 10 h oxidation at 1000℃
Fig.6  Cross-sectional SEM images and element distribution of oxide layer for CrTaTi alloys isothermally exposed to the air at 1000℃ for 3 h (a) and 10 h (b), respectively
Fig.7  SEM and EDS results of CrTaTi alloys after 5 min (a), 10 min (b) and 30 min (c) oxidation
Fig.8  XPS results of oxidized CrTaTi alloy at 1000℃ for 0, 5, 10 and 30 min: the peak fitting of Cr2p fine spectrum on the sample surface (a), Ti2p fine spectrum peak fitting (b), Ta4f fine spectrum peak fitting (c), and the proportion of oxides of Cr, Ta and Ti after oxidation with different times (d)
OxideCr2O3TiO2(rutile)Ta2O5
ΔG/kJ·mol-1-538-713-598
Table 5  Standard Gibbs free energy of oxidation products of Cr, Ta and Ti at 1000℃
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6(5): 299
doi: 10.1002/(ISSN)1527-2648
2 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375C: 213
3 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
4 Fu W J, Huang Y J, Sun J F, et al. Strengthening CrFeCoNi-Mn0.75Cu0.25 high entropy alloy via laser shock peening [J]. Int. J. Plast., 2022, 154: 103296
doi: 10.1016/j.ijplas.2022.103296
5 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153
doi: 10.1126/science.1254581 pmid: 25190791
6 Senkov O N, Senkova S V, Dimiduk D M, et al. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy [J]. J. Mater. Sci., 2012, 47: 6522
doi: 10.1007/s10853-012-6582-0
7 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
8 Guo Z M, Zhang A J, Han J S, et al. Microstructure, mechanical and tribological properties of CoCrFeNiMn high entropy alloy matrix composites with addition of Cr3C2 [J]. Tribol. Int., 2020, 151: 106436
doi: 10.1016/j.triboint.2020.106436
9 Kumar N A P K, Li C, Leonard K J, et al. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation [J]. Acta Mater., 2016, 113: 230
doi: 10.1016/j.actamat.2016.05.007
10 Zhang W, Wang M, Wang L, et al. Interface stability, mechanical and corrosion properties of AlCrMoNbZr/(AlCrMoNbZr)N high-entropy alloy multilayer coatings under helium ion irradiation [J]. Appl. Surf. Sci., 2019, 485: 108
doi: 10.1016/j.apsusc.2019.04.192
11 Jayaraj J, Thinaharan C, Ningshen S, et al. Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium [J]. Intermetallics, 2017, 89: 123
doi: 10.1016/j.intermet.2017.06.002
12 Hua X J, Hu P, Xing H R, et al. Development and property tuning of refractory high-entropy alloys: a review [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1231
doi: 10.1007/s40195-022-01382-x
13 Lv Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54(11): 1553
doi: 10.11900/0412.1961.2018.00372
吕昭平, 雷智锋, 黄海龙 等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54(11): 1553
doi: 10.11900/0412.1961.2018.00372
14 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
doi: 10.1016/j.intermet.2010.05.014
15 Du Y H, Ding D Y, Guo N, et al. The progress of high-entropy alloys with the functional properties [J]. Mater. Rev., 2021, 35(17): 17051
杜宇航, 丁德渝, 郭 宁 等. 高熵合金功能特性研究进展 [J]. 材料导报, 2021, 35(17): 17051
16 Chang C H, Titus M S, Yeh J W. Oxidation behavior between 700 and 1300 C of refractory TiZrNbHfTa high-entropy alloys containing aluminum [J]. Adv. Eng. Mater., 2018, 20(6): 1700948
doi: 10.1002/adem.v20.6
17 Yan X H, Zhang Y. A body-centered cubic Zr50Ti35Nb15 medium-entropy alloy with unique properties [J]. Scripta Mater., 2020, 178: 329
doi: 10.1016/j.scriptamat.2019.11.059
18 Zhao Y L, Yang T, Tong Y, et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy [J]. Acta Mater., 2017, 138: 72
doi: 10.1016/j.actamat.2017.07.029
19 Sohn S S, Kim D G, Jo Y H, et al. High-rate superplasticity in an equiatomic medium-entropy VCoNi alloy enabled through dynamic recrystallization of a duplex microstructure of ordered phases [J]. Acta Mater., 2020, 194: 106
doi: 10.1016/j.actamat.2020.03.048
20 Wang H, He Q F, Yang Y. High-entropy intermetallics: from alloy design to structural and functional properties [J]. Rare Met., 2022, 41: 1989
doi: 10.1007/s12598-021-01926-7
21 Lv Z P, Jiang S H, He J Y, et al. Second phase strengthening in advanced metal materials [J]. Acta Metall. Sin., 2016, 52(10): 1183
吕昭平, 蒋虽合, 何骏阳 等. 先进金属材料的第二相强化 [J]. 金属学报, 2016, 52(10): 1183
22 Gorr B, Schellert S, Müller F, et al. Current status of research on the oxidation behavior of refractory high entropy alloys [J]. Adv. Eng. Mater., 2021, 23(5): 2001047
doi: 10.1002/adem.v23.5
23 Wang S P, Xu J. (TiZrNbTa)-Mo high-entropy alloys: dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening [J]. Intermetallics, 2018, 95: 59
doi: 10.1016/j.intermet.2018.01.017
24 Wang W, Zhang Z T, Niu J Z, et al. Effect of Al addition on structural evolution and mechanical properties of the Al x HfNbTiZr high-entropy alloys [J]. Mater. Today Commun., 2018, 16: 242
25 Zhang J, Hu Y Y, Wei Q Q, et al. Microstructure and mechanical properties of RexNbMoTaW high-entropy alloys prepared by arc melting using metal powders [J]. J. Alloys Compd., 2020, 827: 154301
doi: 10.1016/j.jallcom.2020.154301
26 Yang X, Zhang Y, Liaw P K. Microstructure and compressive properties of NbTiVTaAlx high entropy alloys [J]. Proc. Eng., 2012, 36: 292
doi: 10.1016/j.proeng.2012.03.043
27 Qiao D X, Jiang H, Jiao W N, et al. A novel series of refractory high‑entropy alloys Ti2ZrHf0.5VNb x with high specific yield strength and good ductility [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 925
doi: 10.1007/s40195-019-00921-3
28 Tsakiropoulos P. Alloys for application at ultra-high temperatures: Nb-silicide in situ composites: challenges, breakthroughs and opportunities [J]. Prog. Mater. Sci., 2022, 123: 100714
doi: 10.1016/j.pmatsci.2020.100714
29 Yao H W, Qiao J W, Gao M C, et al. NbTaV-(Ti,W) refractory high-entropy alloys: experiments and modeling [J]. Mater. Sci. Eng., 2016, 674A: 203
30 Lee C, Song G, Gao M C, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy [J]. Acta Mater., 2018, 160: 158
doi: 10.1016/j.actamat.2018.08.053
31 Feng R, Feng B J, Gao M C, et al. Superior high-temperature strength in a supersaturated refractory high-entropy alloy [J]. Adv. Mater., 2021, 33(48): 2102401
doi: 10.1002/adma.v33.48
32 Li Q Y, Zhang H, Li D C, et al. Comparative study of the microstructures and mechanical properties of laser metal deposited and vacuum arc melted refractory NbMoTa medium-entropy alloy [J]. Int. J. Refract. Met. Hard Met., 2020, 88: 105195
33 Wei Q Q, Shen Q, Zhang J, et al. Microstructure and mechanical property of a novel ReMoTaW high-entropy alloy with high density [J]. Int. J. Refract. Met. Hard Mater., 2018, 77: 8
doi: 10.1016/j.ijrmhm.2018.05.006
34 Waseem O A, Lee J, Lee H M, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials [J]. Mater. Chem. Phys., 2018, 210: 87
doi: 10.1016/j.matchemphys.2017.06.054
35 Butler T M, Chaput K J, Dietrich J R, et al. High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs) [J]. J. Alloys Compd., 2017, 729: 1004
doi: 10.1016/j.jallcom.2017.09.164
36 Gorr B, Mueller F, Christ H J, et al. High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition [J]. J. Alloys Compd., 2016, 688: 468
37 Butler T M, Chaput K J. Native oxidation resistance of Al20Nb30Ta10Ti30Zr10 refractory complex concentrated alloy (RCCA) [J]. J. Alloys Compd., 2019, 787: 606
doi: 10.1016/j.jallcom.2019.02.128
38 Gorr B, Azim M, Christ H J, et al. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys [J]. J. Alloys Compd., 2015, 624: 270
doi: 10.1016/j.jallcom.2014.11.012
39 Waseem O A, Auyeskhan U, Lee H M, et al. A combinatorial approach for the synthesis and analysis of Al x Cr y Mo z NbTiZr high-entropy alloys: oxidation behavior [J]. J. Mater. Res., 2018, 33(19): 3226
doi: 10.1557/jmr.2018.241
40 Xiao Y F, Kuang W H, Xu Y F, et al. Microstructure and oxidation behavior of the CrMoNbTaV high-entropy alloy [J]. J. Mater. Res., 2019, 34: 301
doi: 10.1557/jmr.2018.340
41 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10(6): 534
doi: 10.1002/(ISSN)1527-2648
42 Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Mater. Chem. Phys., 2012, 132: 233
doi: 10.1016/j.matchemphys.2011.11.021
43 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109(10): 103505
doi: 10.1063/1.3587228
44 Toda-Caraballo I, Rivera-Díaz-del-Castillo P E J. Modelling solid solution hardening in high entropy alloys [J]. Acta Mater., 2015, 85: 14
doi: 10.1016/j.actamat.2014.11.014
45 Warlimont H, Martienssen W. Springer Handbook of Materials Data [M]. 2nd ed. Cham: Springer, 2018
46 Von Nembach E. Particle Strengthening of Metals and Alloys [M]. New York: John Wiley & Sons, 1997
47 Raman L, Anupam A, Karthick G, et al. Strengthening mechanisms in CrMoNbTiW refractory high entropy alloy [J]. Mater. Sci. Eng., 2021, 819A: 141503
48 Georg F M. Thermodynamik Für Werkstoffwissenschaftler [M]. Weinheim: Leipzig, 2009
49 Müller F, Gorr B, Christ H J, et al. On the oxidation mechanism of refractory high entropy alloys [J]. Corros. Sci., 2019, 159: 108161
doi: 10.1016/j.corsci.2019.108161
50 Ren W L, Ouyang F F, Ding B, et al. The influence of CrTaO4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850~900℃ [J]. J. Alloys Compd., 2017, 724: 565
doi: 10.1016/j.jallcom.2017.07.066
51 Lo K C, Chang Y J, Murakami H, et al. An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide [J]. Sci. Rep., 2019, 9: 7266
doi: 10.1038/s41598-019-43819-x
52 Gorr B, Müller F, Schellert S, et al. A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures [J]. Corros. Sci., 2020, 166: 108475
doi: 10.1016/j.corsci.2020.108475
53 Huang D, Lu J S, Zhuang Y X, et al. The role of Nb on the high temperature oxidation behavior of CoCrFeMnNb x Ni high-entropy alloys [J]. Corros. Sci., 2019, 158: 108088
doi: 10.1016/j.corsci.2019.07.012
54 Xu L J, Zong L, Luo C Y, et al. Toughening pathways and regulatory mechanisms of refractory high-entropy alloys [J]. Acta Metall. Sin., 2022, 58(3): 257
doi: 10.11900/0412.1961.2021.00286
徐流杰, 宗 乐, 罗春阳 等. 难熔高熵合金的强韧化途径与调控机理 [J]. 金属学报, 2022, 58(3): 257
doi: 10.11900/0412.1961.2021.00286
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!