Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (5): 329-335    DOI: 10.11901/1005.3093.2016.282
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Properties of MoSi2-Si3N4 Anti-oxidation Coating for Recrystallized Silicon Carbide
Fangxu NIU1,2, Yanxiang WANG1,2(), Qun LIU2, Abbas Imran2, Chengguo WANG1,2
1 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials(Ministry of Education), Shandong University, Jinan 250061, China
2 Carbon Fiber Engineering Research Center, School of Material Science and Engineering, Shandong University, Jinan 250061, China
Cite this article: 

Fangxu NIU, Yanxiang WANG, Qun LIU, Abbas Imran, Chengguo WANG. Preparation and Properties of MoSi2-Si3N4 Anti-oxidation Coating for Recrystallized Silicon Carbide. Chinese Journal of Materials Research, 2017, 31(5): 329-335.

Download:  HTML  PDF(3024KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A MoSi2-Si3N4 anti-oxidation coating was prepared on the surface of recrystallized silicon carbide heating elements by a simple and low-cost slurry method. Oxidation test of the coating was conducted in oxidizing atmosphere at 1500℃ for 100 h. Results show that the coating is dense and smooth without penetrating pores or micro-cracks. During the course of coating forming, the slurry filled the open pores of large size on the surface of the heating element, thus increasing its density and improving its oxidation resistance. After oxidation test the electrical resistivity of uncoated heating element increases 84.6%, while the coated one increases only 10.2%. The oxidation resistance of heating element was significantly improved with the applied coating. Results of comparative experiments show that the oxidation resistance of MoSi2-Si3N4 muti-phase coating is better than that of the single MoSi2 coating.

Key words:  inorganic non-metallic materials      anti-oxidation coating      recrystallized silicon carbide      heating elements      MoSi2-Si3N4     
Received:  24 May 2016     
Fund: Supported by National Natural Science Foundation (No.51573087) and Shandong Natural Science Foundation(Nos.ZR2014EZ001 & ZR2011EMM002)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.282     OR     https://www.cjmr.org/EN/Y2017/V31/I5/329

Fig.1  FTIR spectra of the crosslinked H-PSO (a) and the resultant product of crosslinked H-PSO at different temperatures (b) and XRD patterns of the resultant product of crosslinked H-PSO at different temperatures (c)
Fig.2  Surface image of the uncoated sample(a) and the coated sample (b), cross-section image of the coated sample (c), element line scanning results of the cross-section of the coating (d), EDS spectrum of the surface of the coating (e) and XRD pattern of the coated sample (f)
Fig.3  Schematic of the formation process of coating
Fig.4  Isothermal oxidation curves of the uncoated and coated samples after oxidation at 1500℃ in air
Fig.5  Surface image of the MoSi2-Si3N4 coated sample (a) and the MoSi2 coated sample after oxidation at 1500℃
Fig.6  XRD pattern of the MoSi2-Si3N4 coated sample after oxidation at 1500℃
Fig.7  Surface image of the MoSi2-Si3N4 coated sample (a) and the MoSi2 coated sample after oxidation at 700℃
Fig.8  XRD pattern of the MoSi2-Si3N4 coated sample (a) and the MoSi2 coated sample (b) after oxidation at 700℃
[1] Guo W M, Xiao H N, Lei H B, et al.Effect of SiO2 content on the microstructure and consolidation mechanism of recrystallized silicon carbide[J]. J. Ceram. Process. Res., 2011, 12(6): 682
[2] Xiao H N, Guo W M, Gao P Z.Progress and applications of recrystallized SiC and its composites[J]. Chinese Science Bulletin, 2015, 60(3): 267(肖汉宁, 郭文明, 高朋召. 再结晶碳化硅及其复合材料的研究进展与应用[J]. 科学通报, 2015, 60(3): 267)
[3] Mei X T.Research of recrystallization silicon carbide heating element by extrusion molding [D]. Wuhan: Wuhan University of Technology, 2007(梅心涛. 挤出成型制备重结晶碳化硅热端材料的研究 [D]. 武汉:武汉理工大学, 2007)
[4] Wei L.Study on the preparation, microstructure and performance of SiC heating elements [D]. Wuhan: Wuhan University of Technology, 2008(魏磊. 碳化硅电热材料的制备及其结构与性能的研究 [D]. 武汉:武汉理工大学, 2008)
[5] Guo W M.Sintering mechanism and performance improvements of recrystallized silicon carbide [D]. Changsha: Hunan University, 2012(郭文明. 再结晶碳化硅烧结机理及其材料性能改进研究 [D]. 长沙:湖南大学, 2012)
[6] Ramasesha S K, Shobu K.Oxidation of MoSi2 and MoSi2-based materials[J]. Bull. Mater. Sci., 1999, 22(4): 769
[7] Huang Y, Lin J, Zhang H.Effect of Si3N4 content on microstructures and antioxidant properties of MoSi2/Si3N4 composite coatings on Mo substrate[J]. Ceram. Int., 2015, 41(10): 13903
[8] Zhao M, Li Z X, Zhang X, et al.The application of MoSi2 in high temperature oxidation resistant coating[J]. Chinese Journal of Materials Protection, 2011, 44(1): 42(赵猛, 李争显, 张欣等. MoSi2在高温抗氧化涂层中的应用[J]. 材料保护, 2011, 44(1): 42)
[9] He Z B, Li H J, Shi X H, et al.Microstructure and oxidation resistance of SiC-MoSi2 multi-phase coating for SiC coated C/C composites[J]. Prog. Nat. Sci. Mater. Int., 2014, 24(3): 247
[10] Fu Q G, Zou X, Chu Y H, et al.A multilayer MoSi2-SiC-B coating to protect SiC-coated carbon/carbon composites against oxidation[J]. Vacuum, 2012, 86(12): 1960
[11] Mao J Y, Liu M, Mao J, et al.Oxidation-resistance of ZrB2-MoSi2 composite coatings prepared by atmospheric plasma spraying[J]. Chinese Journal of Inorganic Materials, 2015, 30(3): 282(毛金元, 刘敏, 毛杰等. 等离子喷涂制备ZrB2-MoSi2复合涂层及其抗氧化性能[J]. 无机材料学报, 2015, 30(3): 282)
[12] Zhang L Q, Pan K M, Duan L H, et al.Oxidation behavior of in situ synthesized MoSi2-SiC composites at 500 degrees C[J]. Acta Metall. Sin., 2013, 49(11): 1303
[13] Bai X, Li J, Zhao X L, et al.Research progress in preparation of hydrogen-containing silicone fluid[J]. Silicone Material, 2014, 28(6): 465(白雪, 李季, 赵晓璐等. 含氢硅油的最新研究进展[J]. 有机硅材料, 2014, 28(6): 465)
[14] Pan J M.Preparation and properties of porous SiOC ceramics and composites from polymer precursor conversion [D]. Zhenjiang: Jiangsu University, 2013(潘建梅. 先驱体转化多孔硅氧碳陶瓷及其复合材料的制备与性能研究 [D]. 镇江: 江苏大学, 2013)
[15] Bai X.Sythesis of high hydrogen-containing silicone oil and silicone oil modified by epoxy or alkyl groups [D]. Harbin: Harbin Institute of Technology, 2014(白雪. 高含氢硅油的合成及其环氧/长链烷基的改性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014)
[16] AN H J.Synthesis of three-dimensional dense silicon oxycarbide ceramics by pyrolysis of polysiloxanes [D]. Tianjin: Tianjin University, 2007(安海娇. 聚硅氧烷热解合成三维致密碳氧化硅陶瓷 [D]. 天津: 天津大学, 2007)
[17] Wang G, Zhao S K, Jiang W.Progress in the low temperature oxidation of MoSi2 [J]. Chinese Journal of Inorganic Materials, 2001, 16(6): 1041(王刚, 赵世柯, 江莞. 二硅化钼材料低温氧化的研究进展[J]. 无机材料学报, 2001, 16(6): 1041)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!