Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (5): 321-328    DOI: 10.11901/1005.3093.2016.366
Orginal Article Current Issue | Archive | Adv Search |
KOH Activation of Diatomite-templated Carbon and Its Electrochemical Property in Supercapacitor
Aijun LI, Xiuyun CHUAN(), Dubin HUANG, Xi CAO
Key Laboratory of Orogenis Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
Cite this article: 

Aijun LI, Xiuyun CHUAN, Dubin HUANG, Xi CAO. KOH Activation of Diatomite-templated Carbon and Its Electrochemical Property in Supercapacitor. Chinese Journal of Materials Research, 2017, 31(5): 321-328.

Download:  HTML  PDF(5034KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Diatomite-templated carbon was prepared with diatomite as template and furfuryl alcohol (FA) as carbon resource, which was further activated with potassium hydroxide as activating agent. The prepared carbon materials were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and N2 adsorption. Simultaneously, the electrochemical properties of the porous carbon before and after activation were studied. The results show that the porous carbon after activation has higher degree of disorder in chemical structure and better electrochemical properties rather than the one before activation. The specific capacitance of the porous carbon was in the range from 45.0 to 69.2 Fg-1 by the current density of 1 Ag-1 and the capacitance retention remains more than 45% by the current density of 20 Ag-1. These results show that the porous carbon after activation has good electrochemical performance and it's an ideal material for electric double layer capacitor.

Key words:  inorganic nonmetallic materials      porous carbon      template method      KOH activation      electrochemical performance     
Received:  30 June 2016     
Fund: Supported by National Natural Science Foundation of China (No.51274015) and China Postdoctoral Science Foundation Funded Project (No.2015M580915)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.366     OR     https://www.cjmr.org/EN/Y2017/V31/I5/321

Samples SiO2 Al3O2 Fe2O3 K2O CaO MgO Na2O TiO2 L.O. I. a
DE 84.23 3.27 0.74 0.46 0.34 0.25 0.20 0.17 4.5
PE 91.99 2.01 0.23 0.35 0.13 0.07 0.17 0.10 2.5
Table 1  Chemical compositions of diatomite before and after purification (%, mass fraction)
Fig.1  XRD patterns of diatomite, template carbon and activated carbon
Samples FWHM(002) Lc/nm FWHM(100) La/nm d(002)/nm
C-700 11.77 0.723 7.32 3.046 0.393
C-800 13.88 0.614 8.20 2.740 0.388
C-900 10.91 0.783 7.09 3.177 0.384
AC-700 9.50 0.895 9.10 2.482 0.396
AC-800 15.73 0.499 5.81 2.796 0.391
AC-900 13.35 0.588 6.54 0.484 0.388
Table 2  Structural parameters extracted from XRD spectra
Fig.2  Raman spectrograms of carbon materials before and after activation (a); peak fittings of (b) C-800 and (c) AC-800
Sample Position/cm-1 FWHM Intensity (area) ID1/IG
D1 G D1 G D1 G
C-700 1352.7 1601.3 154.2 52.8 179.4 63.8 2.81
C-800 1347.5 1594.2 153.7 93.4 624.1 253.4 2.46
C-900 1342.5 1598.2 148.1 73.3 381.0 179.8 2.12
AC-700 1345.6 1594.2 172.5 67.0 1074.9 362.4 2.97
AC-800 1344.6 1591.1 157.7 71.0 983.6 371.0 2.65
AC-900 1346.6 1592.1 154.2 77.8 51.4 21.4 2.40
Table 3  Fitting parameters obtained from Raman spectra of carbon materials
Fig.3  SEM images of (a) diatom shell of DE; (b) center and (c) edge macropores of diatom shell of DE; (d) carbon pillar of C-800; (e and f) carbon tubes of AC-800
Fig.4  (a) N2 adsorption isotherms of diatomite-templated carbon before and after activation; (b) mesopore size distributions
Samples BET surface
area/m2g-1
Pore volume Average pore size /nm Specific capacitance
/Fg-1
IR drop /V R
Total/cm3g-1 Micro/cm3g-1
C-700 34.6 0.0156 9.75
C-800 249 0.190 0.101 8.0 34.9 0.0147 7.99
C-900 29.7 0.0252 7.00
AC-700 58.6 0.0086 2.39
AC-800 581 0.367 0.244 5.3 69.2 0.0044 3.24
AC-900 45.0 0.0084 3.75
Table 4  BET measurements and specific capacitances of the samples at a constant current density of 1 Ag-1
Fig.5  Cyclic voltammograms of (a, c, e) C-X and (b, d, f) AC-X
Fig.6  Galvanostatic charge/discharge curves of carbon materials at a constant current density of (a) 1 Ag-1 and (b) 10 Ag-1,variations of (c) specific capacitance and (d) capacitance retention with current density
[1] Sharma P, Bhatti T S.A review on electrochemical double-layer capacitors[J]. Energy Convers.Manage., 2010, 51: 2901
[2] Zhang L L, Zhao X S.Carbon-based materials as supercapacitor electrodes[J]. Chem. Soc. Rev., 2009, 38: 2520
[3] Zhong C, Deng Y D, Hu W B, et al.A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chem. Soc. Rev., 2015, 44: 7484
[4] Zhai Y P, Dou Y Q, Zhao D Y, et al.Carbon materials for chemical capacitive energy storage[J]. Adv. Mater., 2011, 23: 4828
[5] Frackowiak E.Carbon materials for supercapacitor application[J].Phys. Chem. Chem. Phys., 2007, 9: 1774
[6] Gu W T, Yushin G.Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene[J]. Wiley Int. Rev. Energy Environ., 2014, 3: 424
[7] Stoller M D, Park S J, Zhu Y W, et al.Graphene-based ultracapacitors[J]. Nano Lett., 2008, 8: 3498
[8] Futaba D N, Hata K, Yamada T, et al.Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nat.Mater., 2006, 5: 987
[9] Wang K X, Wang Y G, Wang Y R, et al.Mesoporous carbon nanofibers for supercapacitor application[J]. J. Phys. Chem., 2009, 113C: 1093
[10] Losic D, Mitchell J G, Voelcker N H.Diatomaceous lessons in nanotechnology and advanced materials[J]. Adv. Mater., 2009, 21: 2949
[11] Noll F, Sumper M, Hampp N.Nanostructure of diatom silica surfaces and of biomimetic analogues[J]. Nano Lett., 2002, 2: 91
[12] Losic D, Mitchell J G, Lal R, et al.Rapid fabrication of micro-and nanoscale patterns by replica molding from diatom biosilica[J]. Adv. Funct. Mater., 2007, 17: 2439
[13] Pérez-Cabero M, Puchol V, Beltrán D, et al.Thalassiosirapseudonana diatom as biotemplate to produce a macroporous ordered carbon-rich material[J]. Carbon, 2008, 46: 297
[14] Liu D, Yuan P, Tan D Y, et al.Effects of inherent/enhanced solid acidity and morphology of diatomite templates on the synthesis and porosity of hierarchically porous carbon[J]. Langmuir, 2010, 26: 18624
[15] Liu D, Yuan WW, Yuan P, et al.Physical activation of diatomite-templated carbons and its effect on the adsorption of methylene blue (MB)[J]. Appl. Surf. Sci., 2013, 282: 838
[16] Dobor J, Perényi K, Varga I, et al.A new carbon-diatomite earth composite adsorbent for removal of heavy metals from aqueous solutions and a novel application idea[J]. Microporous Mesoporous Mater., 2015, 217: 63
[17] Yu W B, Deng L L, Yuan P, et al.Surface silylation of natural mesoporous/macroporous diatomite for adsorption of benzene[J]. J. Colloid Interface Sci., 2015, 448: 545
[18] Wang J C, Kaskel S.KOH activation of carbon-based materials for energy storage[J]. J. Mater. Chem., 2012, 22(45): 23710
[19] Liu D, Yuan P, Tan D Y, et al.Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products[J]. J. Colloid Interface Sci., 2012, 388: 176
[20] Sonwane C G, Bhatia S K.Characterization of pore size distributions of mesoporous materials from adsorption isotherms[J]. J. Phys. Chem., 2000, 104B: 9099
[21] Biscoe J, Warren B E.An X-ray study of carbon black[J]. J. Appl. Phys., 1942, 13: 364
[22] Barata-Rodrigues P M, Mays T J, Moggridge G D. Structured carbon adsorbents from clay, zeolite and mesoporousaluminosilicate templates[J]. Carbon, 2003, 41: 2231
[23] Cuesta A, Dhamelincourt P, Laureyns J, et al.Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials[J]. J. Mater. Chem., 1998, 8: 2875
[24] Kyotani T, Nagai T, Inoue S, et al.Formation of new type of porous carbon by carbonization in zeolite Nanochannels[J]. Chem. Mater., 1997, 9: 609
[25] Tuinstra F, Koenig J L.Raman spectrum of graphite[J]. J. Chem. Phys., 1970, 53: 1126
[26] Wang Y, Alsmeyer D C, McCreery R L. Raman spectroscopy of carbon materials: structural basis of observed spectra[J]. Chem. Mater., 1990, 2: 557
[27] Wang S Q, Cheng H F, Jiang D, et al.Raman spectroscopy of coal component of late Permian coals from southern China[J]. Spectrochem. Acta Mol. Biomol. Spectrosc., 2014, 132A: 767
[28] Sonibare O O, Haeger T, Foley S F.Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J]. Energy, 2010, 35: 5347
[29] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure Appl. Chem., 1985, 57: 603
[1] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[2] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[3] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[4] OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. 材料研究学报, 2022, 36(2): 152-160.
[5] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[6] YU Moxin, KUAI Le, WANG Liang, ZHANG Chen, WANG Xiaoting, CHEN Qihou. Synthesis of N-Doped Hierarchical Porous Carbon and its Adsorption Capacity for Acid Orange 74[J]. 材料研究学报, 2021, 35(9): 667-674.
[7] FENG Kai, L Guangzhe, L Bin. Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders[J]. 材料研究学报, 2021, 35(8): 591-596.
[8] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[9] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[10] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[11] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[12] ZUO Cheng, DU Yunhui, ZHANG Peng, WANG Yujie, Cao Haitao. Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3[J]. 材料研究学报, 2020, 34(8): 621-627.
[13] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[14] ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao. Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries[J]. 材料研究学报, 2020, 34(3): 191-197.
[15] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
No Suggested Reading articles found!