Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (4): 383-388    DOI:
论文 Current Issue | Archive | Adv Search |
Corrosion Resistance of Ti–ion Implanted Mg–Ca–Zn Alloys in SBF
MAO Lihe1,2,3,   WANG Yulin1,   WAN Yizao1,2,   HE Fang1,2,   HUANG Yuan1,2,
1.School of Materials Science & Engineering, Tianjin University, Tianjin 300072
2.Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072
3.School of Materials Science & Engineering, Tianjin Polynosic University, Tianjin 300160
Cite this article: 

MAO Lihe WANG Yulin WAN Yizao HE Fang HUANG Yuan. Corrosion Resistance of Ti–ion Implanted Mg–Ca–Zn Alloys in SBF. Chin J Mater Res, 2010, 24(4): 383-388.

Download:  PDF(1097KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion resistance in the simulated body fluid of Mg–1.0%Ca–1.0%Zn (mass fraction) magnesium alloy with Titanium ion implantation of 1.5×1017cm−2 was investigated. The implantation element content, distribution of elements into the alloy surface were obtained via X-ray energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS); The surface hardness and modulus of the alloy, the polarization curve and the morphology in the SBF were characterized by nano snick, three electrode system and scanning electron microscope respectively. The results show that the implantation element content was improved with the ion implantation dose increases. TiO2 formed at the surface of Mg–1.0%Ca–1.0%Zn magnesium alloy. Hardness and modulus were improved after the implantation of Titanium ions, the maximum of surface hardness was achevied at a depth of 100 nm below the alloy surface. Meanwhile, the  polarization resistance was strengthened and consequently the corrosion resistance of the alloy was improved.

Key words:  materials failure and protection        biomaterials        Mg–Ca–Zn alloy        ion implantation        corrosion resistance     
Received:  22 April 2010     
ZTFLH: 

TG172

 
Fund: 

Supported by the Science and Technology Plan Projects of Tianjin No.07ZCKFSF01100.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I4/383

[1] LI Longchuan, Gao Jiacheng, Wang Yong. Corrosion Behaviors and Surface Modification of Magnesium Alloys for Biomaterial Applications.Materials Review, 17(10), 29-32(2003) (李龙川,高家诚,王勇. 医用镁合金的腐蚀行为与表面改性. 材料导报,17(10), 29–32(2003)) [2] C M Serre, Papillard M, Chavassieux P, Voegel. J. C. Boivin. G. Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. Journal of Biomedical Materials Research, 42(7),626–631(1998) [3] Hideyuki Kuwahara, Yousef Al-Abdullat, Naoko Mazaki, Sadami Tsutsumi and Tatsuhiko Aizawa. Precipitation of Magnesium Apatite on Pure Magnesium Surface during Immersing in Hank’s Solution. Materials Transactions. 42(7),1317–1321(2001) [4]HUANG Jingjing, YangKe. Biomedical research of magnesium alloys. Materials Review, 20(4), 67-69(2006) (黄晶晶,杨 柯. 镁合金的生物医用研究. 材料导报, 20(4), 67-69(2006)) [5] P Mark. Staiger, Alexis M. Pietak, Jerawala Huadmai, George Dias, Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27(9),1728-1734(2006) [6]CAO Linfeng, DU Wenbo, SU Xuekuan. Role of Calcium Alloying in Magnesium Alloys. Foundry Technology, 27(2), 182-184(2006) (曹林锋,杜文博,苏学宽. Ca合金化在镁合金中的作用.铸造技术,27(2), 182-184(2006)) [7] J E Gray, B Luan. How useful is SBF in predicting in vivo bone bioactivity. Journal of Alloys and Compounds, 336(1-2), 88-113(2002) [8]ZhU X M, Yang H G, Lei M K. Corrosion resistance of Al ion implanted AZ31 magnesium alloy at elevated temperature. Surface and Coatings Technology, 201(15), 6663-6666(2007) [9] L Kutsenko, D Fuks, A Kiv, Talianker Michael, Burlaka Ljubov, Monteiro Othon, Brown Ian. Mechanism of phase transformations in Mg-based alloys subjected to plasma immersion ion implantation of Ag. Acta Materialia, 54 (10),2637-2643(2006) [10] ZhOU Hai, Chen Fei, Yao Bin, Han Gangjian, Jawid Askari. Properties of the TiN coatings on previously Ti ion-implanted magnesium alloy substrate. Surface and Coatings Technology, 201(15),6730-6733(2007) [11] I Nakamugawa, R Martin, E J. Knystautas. Improving corrosion resistance of AZ91D magnesium alloy by nitrogen ion implantation. Corrosion, 38 (7),921-925(1996) [12]Tadashi Kokubo, Hiroaki Takadama. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials, 27(15),2907-2915(2006) [13]HU Maofu, Electrochemical corrosion, (Beijin, the Press of Metallurgy Industry, 1991)p.96 (胡茂圃.腐蚀电化学,(北京/冶金工业出版社,1991)p.96.)
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[10] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[11] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[12] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[13] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[14] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[15] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
No Suggested Reading articles found!