Please wait a minute...
Chin J Mater Res  2004, Vol. 18 Issue (2): 176-180    DOI:
Research Articles Current Issue | Archive | Adv Search |
Influence of CaO and V2O5 on high frequency MnZn power ferrite
;;
电子科技大学微电子与固体电子学院
Cite this article: 

. Influence of CaO and V2O5 on high frequency MnZn power ferrite. Chin J Mater Res, 2004, 18(2): 176-180.

Download:  PDF(1442KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The high frequency MnZn power ferrite was prepared by the conventional oxide ceramic process. The more quantity of CaO is needed to increase the grain boundary resistivity and suppress the eddy current loss of the high frequency MnZn power ferrite applied at frequencies higher than 500 kHz. An optimum concentration of V$_{2}$O$_{5}$ acting indirectly via liquid phase formation and influencing the microstructural development during sintering makes the crystalline grain be refined, the amount of grain boundary and grain boundary resistivity increase, the porosity decrease, and the power losses be suppressed. Adopting the complex additives containing 0.3, 0.15 and 0.1\% by weight of CaO, TiO$_{2}$ and V$_{2}$O$_{5}$, respectively, the MnZn power ferrite cores with initial permeability of about 1500, low power loss of about 130 mW$\cdot$cm$^{-3}$ (500 kHz, 50 mT, 25℃), grain diameter of 3$\sim$5 $\mu$m and low porosity can be prepared.
Key words:  inorganic non-metallic materials      power ferrite      oxide ceramic process      additive      
Received:  21 May 2004     
ZTFLH:  TM277  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2004/V18/I2/176

1 WANG Gan,DAI Jingying, WANG Youjun, J. Magn. Mater. Device, 26(2) , 40(1995) (汪敢,戴京营,王友军,磁性材料及器件,26(2) ,40(1995) )
2 LI Haihua,FENG Zekun,HE Huahui,Instrument Technique and Sensor,(4) ,10(2001) (李海华,冯则坤,何华辉,仪表技术与传感器,(4) ,10(2001) )
3 S.Gasiorck,J.Kulikowski,J.Mang.Magn. Mater.,26,295(1982)
4 A.Akashi,Trans.Jpn.Inst.Mat.,2,171(1961)
5 A.Znidarsic,M.Limpel,M.Drofenik,IEEE Trans.on Magn.,31(2) ,950(1995)
6 I-Nan Lin,R.Mishra, G.Thomas, IEEE Trans. on Magn.,Mag-18(6) ,1544(1982)
7 Ying-Chun Lin,Dershin Gan,Pouyan Shen,Mater.Sci.Eng.,A188,327(1994)
8 P.Andrei,O.F.Caltun,C.Papusoi,A.Stancu,M.Feder,J.Magn.Magn.Mater.,196~197,362(1999)
9 R.J.Willey,J.T.Mullin,J.Magn.Magn.Mater.,26,315(1982)
10 H.Tsunekawa,A.Nakata,T.Kamijo,K.Okutani,R.K.Mishra,G.Thomas,IEEE Trans on Magn.,MAG-15(6) ,1855(1979)
11 C.S.Liu,J.M.Wu,M.T.Tsay,C.J.Chen,IEEE Trans.on Magn.,32(5) ,4860(1996)
12 Geun-Min Jeong,Jaeho Choi,Sung-Soo Kim,IEEE Trans.on Magn.,36(5) ,3405(2000)
13 G.C.Jain,B.K.Das,S.Kumari,IEEE Trans.on Magn.,MAG-16(6) ,1428(1980)
14 O.Inoue,N.Maysutani,K.Kugimiya,ICF,6,1155(1992)
15 S.Yamada,E.Qtsuki,J.Appl.Phys.,81,4791(1997)
16 H.Rikukawa,IEEE Trans.on Magn.,18(6) ,1535(1982)
17 S.Otobe,Y.Yachi,T.Hashimoto,T.Tanimori,T.Shigenaga,H.Takei,K.Hontani,IEEE Trans.on Magn.,35(5) ,3409(1999)
18 Y.Matsuo,K.Ono,T.Hashimoto,F.Nakao,IEEE Trans.on Magn.,37(4) ,2369(2001)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!