Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (7): 542-550    DOI: 10.11901/1005.3093.2024.406
ARTICLES Current Issue | Archive | Adv Search |
Structure and Properties of a Novel Piezoelectric Zirconate-modified K0.5Na0.5(Nb0.95Ta0.05)O3 Ceramics
YIN Qiyi(), ZHANG Mengjun(), SI Fan, LIN Fei
School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
Cite this article: 

YIN Qiyi, ZHANG Mengjun, SI Fan, LIN Fei. Structure and Properties of a Novel Piezoelectric Zirconate-modified K0.5Na0.5(Nb0.95Ta0.05)O3 Ceramics. Chinese Journal of Materials Research, 2025, 39(7): 542-550.

Download:  HTML  PDF(9425KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel piezoelectric ceramics (1-x)K0.5Na0.5(Nb0.95Ta0.05)O3-x(Bi0.5Yb0.5)0.95Li0.05ZrO3 was prepared by the conventional solid-phase sintering method, and then was characterized by means of XRD, SEM, EDS, etc. It can be determined that BYLZ incorporates completely into the KNNT lattice in an atomic substitution manner, thereby forming a single perovskite structure, namely, the ceramics is O phase for x = 0.0, O-T phase for x in the range 0.0 < x ≤ 0.02, R-O-T phase for x in the range 0.03 < x ≤ 0.04, and T phase for x in the range 0.04 < x ≤ 0.05. Performance tests show that ceramics achieve the best performance in the polymorphic phase boundary region of x = 0.04:i.e., d33 = 305 pC/N, kp = 38.17%, εr = 1710, tanδ = 2.5%, Pr = 34.63 μC/cm2, EC= 20.67 kV/cm, and TC = 340 °C.

Key words:  inorganic ceramic materials      lead-free piezoelectric ceramics      solid-phase sintering      multiphase coexistence     
Received:  03 October 2024     
ZTFLH:  TN384  
Fund: Natural Science Foundation of Anhui Provincial Department of Education(2022AH010096);2022 New Era Education Quality Project(2022xscx146)
Corresponding Authors:  YIN Qiyi, Tel: 19541820704, E-mail: yinqyi@163.com;
ZHANG Mengjun, Tel: 15156557941, E-mail: 3229880447@qq.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.406     OR     https://www.cjmr.org/EN/Y2025/V39/I7/542

Fig.1  XRD patterns of (1-x)KNNT-xBYLZ ceramics (a) 2θ = 20°-60°, (b) 2θ = 44°-47°
Fig.2  Dielectric constant εr of ceramics at low temperatures (a) x = 0, (b) x = 0.01, (c) x = 0.02, (d) x = 0.03, (e) x = 0.04, (f) x = 0.05
Fig.3  Rietveld refinement on XRD patterns for x = 0.01 (a), x = 0.02 (b), x = 0.03 (c), and x =0.04 (d)
xPhaseProportionSGα = (β = γ)a / nmb / nmc / nmc/a
0.01O44.5%Amm290°0.5630.3950.567
T55.5%P4mm90°0.4000.4000.3960.9925
0.02O13.0%Amm290°0.5670.3960.564
T87.0%P4mm90°0.3980.3980.3970.9975
0.03R9.1%R3c90°0.5640.5641.384
O3.5%Amm290°0.3980.5690.571
T87.4%P4mm90°0.3970.3970.4021.0126
0.04R17.3%R3c90°0.5800.5801.438
O3.1%Amm290°0.5670.3960.566
T88.6%P4mm90°0.3970.3970.4011.0100
Table 1  Crystal structure parameters of (1-x) KNNT-xBYLZ ceramics
Fig.4  Surface morphologies of (1-x)KNNT-xBYLZ ceramics (a) x = 0, (b) x = 0.01, (c) x = 0.02, (d) x = 0.03, (e) x = 0.04, (f) x = 0.05
Fig.5  Densities and relative densities of (1-x) KNNT-xBYLZ ceramics with the change of x, the inset graph shows the trend of grain size change
Fig.6  Grain size distribution of (1-x)KNNT-xBYLZ ceramics (a) x = 0.0, (b) x = 0.01, (c) x = 0.02, (d) x = 0.03, (e) x = 0.04, (f) x = 0.05
Fig.7  d33 and kp (a), εr and tanδ (b) of the (1-x)KNNT-xBYLZ ceramics
Fig.8  Dielectric temperature spectrum change curve (a) and phase diagram (b) of (1-x) KNNT-xBYLZ ceramics
Fig.9  P-E curves (a), residual Pr and EC values (b), εrPr and d33 values (c) of (1-x)KNNT-xBYLZ ceramics
Materiald33pC/NECkV·cm-1PrμC·cm-2εrTCoCReference
0.95(Na0.5K0.5)NbO3-0.05SrTiO313014.213.81352308[25]
0.95(K0.6Na0.4)NbO3-0.05(Bi0.5Na0.5)ZrO334019.58[4]
0.97(K0.5Na0.5)0.98-Ag0.02(Nb0.96Sb0.04)O3-0.03(Bi0.5Na0.5)ZrO3550250[41]
0.96K0.5Na0.5NbO3-0.04CaSnO343032168297[42]
0.865(K0.5Na0.5)0.98Ag0.02Nb0.96Ta0.04O3-0.035CuO-0.01Na2O34319.224.91382306[43]
0.96(K0.5Na0.5)NbO3-0.04[NaSbO3 +Bi0.5(Na0.8K0.2)0.5(Zr0.5Hf0.5)O3]4524414[44]
0.96K0.5Na0.5(Nb0.95Ta0.05)O3-0.04(Bi0.5Yb0.5)0.95Li0.05 ZrO330520.6734.631710340This work
Table 2  Comparison of the experimental data with the electrical properties of other KNN-based piezoelectric ceramics
[1] Rahman A, Jiang M, Rao G, et al. Improved ferroelectric, piezoelectric, and dielectric properties in pure KNN translucent ceramics by optimizing the normal sintering method [J]. Ceram. Int., 2022, 48(14): 20251
[2] Zhao R J, Li Y L, Zheng Z S, et al. Phase structure regulation and enhanced piezoelectric properties of Li-doped KNN-based ceramics [J]. Mater. Chem. Phys., 2020, 245: 122806
[3] Zhao L, Wu W J, Zhao C L, et al. Comparison of contribution to phase boundary from A-site aliovalent dopants in high-performance KNN-based ceramics [J]. Phys. Chem. Chem. Phys., 2022, 24(45): 27670
doi: 10.1039/d2cp04523k pmid: 36373615
[4] Batra K, Sinha N, Kumar B. Lead-free 0.95(K0.6Na0.4)NbO3-0.05(Bi0.5-Na0.5)ZrO3 ceramic for high temperature dielectric, ferroelectric and piezoelectric applications [J]. J. Alloy. Compd., 2020, 818: 152874
[5] He B, Liu W P, Zhou B W, et al. Softening effect of trace Fe-substituted potassium-sodium niobate-based lead-free piezoceramics [J]. J. Alloy. Compd., 2022, 909: 164718
[6] Wang X, Lv X, Ma Y C, et al. Deciphering the role of A-site ions of AZrO3-type dopants in (K, Na)NbO3 ceramics [J]. Acta Mater., 2023, 254: 118997
[7] Zheng R H, Yin Q Y, Cheng H W, et al. The effect of (Bi0.5Li0.5)0.9-Sr0.1ZrO3 substitution on the construction of polymorphic phase boundary and high curie temperature of K0.45Na0.55NbO3 piezoelectric ceramics [J]. J. Mater. Sci., 2023, 34(11): 954
[8] Zhang Y, Liu B H, Shen B, et al. Tolerance factor effect on the structure and properties of KNN based ceramics at orthorhombic–tetragonal phase boundary [J]. J. Mater. Sci.: Mater. Electr., 2017, 28(15): 11114
[9] Suewattana M, Singh D J. Local dynamics and structure of pure and Ta substituted (K1- x Na x ) NbO3 from first principles calculations [J]. Phys. Rev., 2010, 82B: 014114
[10] Huang Y L, Zhao C L, Wu B, et al. Diffused and successive phase transitions of (K, Na)NbO 3 - based ceramics with high strain and temperature insensitivity [J]. J. Am. Ceram. Soc., 2018, 102(5): 2648
[11] Xing J, Tan Z, Zheng T, et al. Research progress of high piezoelectric activity of potassium sodium niobate based lead-free ceramics [J]. Acta Physica Sinica, 2020, 69(12): 127707
邢 洁, 谭 智, 郑 婷 等. 铌酸钾钠基无铅压电陶瓷的高压电活性研究进展 [J]. 物理学报, 2020, 69(12): 127707
[12] Zuo R Z, Fu J. Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics [J]. J. Am. Ceram. Soc., 2011, 94(5): 1467
[13] Wu B, Ma J, Wu W J, et al. Enhanced electrical properties, phase structure, and temperature-stable dielectric of (K0.48Na0.52)NbO3-Bi0.5Li0.5ZrO3 ceramics [J]. Ceram. Int., 2018, 44(1): 1172
[14] Xu Y F, Fu K, Liu K, et al. A state of the art review of the tribology of graphene/MoS2 nanocomposites [J]. Mater. Today Commun., 2023, 34: 105108
[15] Li Y L, Jia P W, Zhao R J, et al. Nanoscale domains in K0.48Na0.52Nb0.96Sb0.04O3-Bi0.5Na0.5ZrO3 ceramics enhance piezoelectric properties [J]. Mater. Chem. Phys., 2022, 277: 125575
[16] Malic B, Bernard J, Bencan A, et al. Influence of zirconia addition on the microstructure of K­0.5Na0.5NbO3 ceramics [J]. J. Eur. Ceram. Soc., 2008, 28: 1191
[17] Zheng T, Wu W J, Wu J G, et al. Balanced development of piezoelectricity, Curie temperature, and temperature stability in potassium-sodium niobhrate lead-free ceramics [J]. J. Mater. Chem., 2016, 4C(41) : 9779
[18] Liao Y, Wang D M, Wang H, et al. Transformation of hardening to softening behaviors induced by Sb substitution in CuO-doped KNN-based piezoceramics [J]. Ceram. Int., 2019, 45(10): 13179
doi: 10.1016/j.ceramint.2019.03.254
[19] Shi H L, Zhao M, Zhang D Y, et al. Effect of Sb-induced oxygen octahedral distortion on piezoelectric performance and thermal stability of Pb(In,Nb)O3-Pb(Hf,Ti)O3 ceramics [J]. J. Mater. Sci. Technol., 2023, 161: 101
[20] Shi J K, Liu J Y, Xie S X, et al. Dopant tuned multi-functionality in barium titanate based lead-free piezoceramics [J]. J. Alloy. Compd., 2023, 942: 169092
[21] Tao H, Yin J, Wu W J, et al. Sharpening polycrystalline phase boundary for potassium sodium niobate ceramics with MnF2 modification [J]. J. Am. Ceram. Soc., 2022, 105(7): 5003
[22] Xi K B, Li Y L, Sun Y, et al. Effect of a lattice distortion strategy on the phase transition and properties in KNN‐based ceramics [J]. J. Am. Ceram. Soc., 2023, 106(1): 466
[23] Xie L X, Chen H, Xie Y N, et al. The roles of Sn4+ in affecting performance of Potassium Sodium Niobate ceramics [J]. J. Alloy. Compd., 2022, 899: 163290
[24] Yin M Y, Fang M X, Ji Y C, et al. Stabilized piezoelectricity upon ferro-ferro phase transition achieved by aging induced domain memory effect in acceptor doped lead-free ceramics [J]. Scr. Mater., 2022, 219: 114872
[25] Duong T A, Ahn C W, Kim B W, et al. Effects of SrTiO3 modification on the piezoelectric and strain properties of lead-free K0.5-Na0.5NbO3-based ceramics [J]. J. Electron. Mater., 2022, 51(4): 1490
[26] Shen Z Y, Xu Y, Li J F. Enhancement of Qm in CuO-doped compositionally optimized Li/Ta-modified (Na,K)NbO3 lead-free piezoceramics [J]. Ceram. Int., 2012, 38(): S331
[27] Chen J J, Wu T, Huang W S, et al. Giant piezoelectric response and structure evolution of Bi0.5(Na0.3K0.3Li(0.4- x )Ba x )0.5ZrO3 modified (K0.48Na0.52)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics [J]. Ceram. Int., 2024, 50: 14614
[28] Peng L, Gao X Q, Liu X K, et al. Synergism optimization of ferroelectric phase-transition temperature and piezoelectric properties of KNN-based ceramics by chemical composition regulation [J]. Mater. Today Commun., 2024, 38: 108214
[29] Kok S H W, Lee J, Chong W K, et al. Bismuth-rich Bi12O17Cl2 nanorods engineered with oxygen vacancy defects for enhanced photocatalytic nitrogen fixation [J]. J. Alloy. Compd., 2023, 952: 170015
[30] Liu Y L, Zhu Z R, Liu Y Q, et al. First principles insight on enhanced photocatalytic performance of sulfur-doped bismuth oxide iodate [J]. Mater. Sci. Semicond. Process., 2023, 165: 107672
[31] Lv X, Wu J, Zhang X X. Tuning the covalency of A-O bonds to improve the performance of KNN-based ceramics with multiphase coexistence [J]. ACS Appl. Mater. Interfaces, 2020, 12(44): 49795
[32] He B. Study on doping modification and properties of potassium-sodium niobate based piezoelectric ceramics [D]. Ji'nan: Qilu University of Technology, 2022
何 波. 铌酸钾钠基压电陶瓷的掺杂改性及性能研究 [D]. 济南: 齐鲁工业大学, 2022
[33] Sun X X, Zhang J W, Lv X, et al. Understanding the piezoelectricity of high-performance potassium sodium niobate ceramics from diffused multi-phase coexistence and domain feature [J]. J. Mater. Chem., 2019, 7A(28) : 16803
[34] Lay R, Deijs G S, Malmström J. The intrinsic piezoelectric properties of materials – a review with a focus on biological materials [J]. RSC Adv., 2021, 11(49): 30657
[35] Delgado-Tobón A E, Aperador-Chaparro W A, Misnaza-Rodríguez Y G. Evaluation of the lubricating power of chemical modified Sesame oil additivated with Cu and Al2O3 nanoparticles [J]. Dyna, 2018, 85(207): 93
[36] Elagouz A, Ali M K A, Hou X J, et al. Techniques used to improve the tribological performance of the piston ring-cylinder liner contact [J]. IOP Conf. Ser. Mater. Sci. Eng., 2019, 563: 022024
[37] Zheng T, Wu J G. Relationship between poling characteristics and phase boundaries of potassium-sodium niobate ceramics [J]. ACS Appl. Mater. Interfaces, 2016, 8(14): 9242
[38] Wang Y Q, Xiang G L, Gao L, et al. High piezoelectric performance and cost-effective Pb(Mn1/3Nb2/3)O3-Pb(Zr,Ti)O3 piezoelectric ceramics [J]. J. Electron. Mater., 2023, 52(5): 2986
[39] Wang T, Jiang M H, Li L, et al. Effects of MnO2-doping on growth, structure and electrical properties of lead-free piezoelectric K0.5Na0.5NbO3-BiAlO3 single crystals [J]. J. Alloy. Compd., 2023, 935: 168126
[40] Schultheiß J, Picht G, Wang J, et al. Ferroelectric polycrystals: Structural and microstructural levers for property-engineering via domain-wall dynamics [J]. Prog. Mater. Sci., 2023, 136: 101101
[41] Yang W W, Wang Y C, Li P, et al. Improving electromechanical properties in KNANS-BNZ ceramics by the synergy between phase structure modification and grain orientation [J]. J. Mater. Chem., 2020, 8C(18) : 6149
[42] Kannan M R, Logeswari A, Carry M W, et al. Synthesis and investigation of (1-x)K0.5Na0.5NbO3-(x)CaSnO3 lead free perovskite ceramics of high dielectric and piezoelectric properties for transducer applications [J]. J. Mater. Sci.-Mater. Electron., 2022, 33(12): 9224
[43] Yin Q Y, Wang C Z, Wang Y, et al. Structure and properties of (K0.5Na0.5)0.98Ag0.02Nb0.96Ta0.04O3 piezoelectric ceramics doped by CuO [J]. J. Mater. Sci.-Mater. Electron., 2018, 29(11): 9268
[44] Yang Y, Wang H, Li Y, et al. Phase coexistence induced strong piezoelectricity in K0.5Na0.5NbO3-based lead-free ceramics [J]. Dalton Trans., 2019, 48(28): 10676
doi: 10.1039/c9dt01735f pmid: 31241106
[1] Junkai WANG, Yuanzhuo ZHANG, Saisai LI, Shengtao GE, Jianbo SONG, Haijun ZHANG. Catalytic Carbothermal Reduction Synthesis and Mechanism of 3C-SiC from Diatomite with Fe as Catalyst[J]. 材料研究学报, 2018, 32(10): 767-774.
[2] Bijun FANG, Xing LIU, Zhenqian ZHANG, Zhihui CHEN, Jianning DING, Xiangyong ZHAO, Haosu LUO. Ferroelectric Phase Transition Character of BCZT Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2017, 31(4): 248-254.
[3] ;. Synthesis and piezoelectric properties of (Na0.5Bi0.5)TiO3--BaTiO3[J]. 材料研究学报, 2004, 18(5): 524-528.
No Suggested Reading articles found!