Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (12): 911-921    DOI: 10.11901/1005.3093.2024.188
ARTICLES Current Issue | Archive | Adv Search |
Study on Precipitation Behavior of TiN Particles during Solidification Process of Ti-microalloyed Steels Based on Control of N Content
CHEN Ruiyang1, QIU Xin2, DING Hanlin1(), WANG Zijian1, XIANG Chongchen1
1 School of Iron and Steel, Soochow University, Suzhou 215137, China
2 School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China
Cite this article: 

CHEN Ruiyang, QIU Xin, DING Hanlin, WANG Zijian, XIANG Chongchen. Study on Precipitation Behavior of TiN Particles during Solidification Process of Ti-microalloyed Steels Based on Control of N Content. Chinese Journal of Materials Research, 2024, 38(12): 911-921.

Download:  HTML  PDF(12971KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The precipitation behavior of TiN particles during the solidification process of Ti-microalloyed steels with varying N contents was investigated by experimental observations and theoretical analysis. The results indicate that reducing the N content leads to decrease in the number of coarse TiN inclusions precipitated from the liquid phase and changes in the morphology of TiN inclusions, as well as alterations in the driving force for the precipitation and the size of TiN particles precipitated from the solid phase during solidification. Simultaneously, the decrease in N content contributes to the decrease of the volume fraction of TiN particles precipitated from both the liquid and solid phase. It is concluded that the morphology, size and volume fraction of TiN inclusions and precipitated TiN particles within the steel may be controlled by adjusting the N content of Ti-microalloyed steels with a set Ti content.

Key words:  metallic materials      Ti-microalloyed steel      TiN particles      solidification segregation      precipitation behavior     
Received:  25 April 2024     
ZTFLH:  TG142.1-3  
Fund: National Natural Science Foundation of China(52174367)
Corresponding Authors:  DING Hanlin, Tel: (0512)67165762, E-mail: dinghanlin@suda.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.188     OR     https://www.cjmr.org/EN/Y2024/V38/I12/911

CMnSiTiNNbAlTi/N
S10.1131.510.3270.00950.0107-0.0020.888
S20.161.340.260.01000.00480.0260.0172.083
S30.121.470.40.01100.00270.0440.0074.074
Table 1  Chemical compositions of experimental steels (mass fraction, %)
Fig.1  Metallographic observation and size analysis of second phase particle distribution (a, b, e) S1, (c, f) S2, (d, g) S3
Fig.2  SEM observations and EDS energy spectrum analysis of second-phase particles precipitated from liquid phase in steel (a) S1, (b) S2, (c) S3
Fig.3  Distribution, morphology observation and size analysis of submicron TiN particles in steel (a, d, g) S1, (b, e, h) S2, (c, f, i) S3
Fig.4  Equilibrium relationship between Ti content and N content at different temperatures
S1S2S3
Equilibrium distribution coefficient[27], k0(Ti)0.4
Equilibrium distribution coefficient[27], k0(N)0.32
Melting point of pure solvent[27], T0 / K1789
Liquidus, TL / K178817871786
Solidus, TS / K173317461750
Table 2  Parameters used in the solidification process
Fig.5  Relationship between solid phase fraction and solute concentration at solid/liquid interface during equilibrium solidification (a, b) liquid phase solute and solid phase solute of S1 steel, (c, d) liquid phase solute and solid phase solute of S2 steel, (e, f) liquid phase solute and solid phase solute of S3 steel
Fig.6  Relationship between the Ti and N concentration products and the solid phase ratio during the solidification (a, b) Liquid phase and solid phase of S1 steel, (c, d) Liquid phase and solid phase of S2 steel, (e, f) Liquid phase and solid phase of S3 steel
Fig.7  Schematic diagram of TiN particles and TiN inclusion formation during solidification[30]
Fig.8  TiN size during solidification (a, b) liquid phase TiN inclusion size (c, d) solid phase TiN particle size
Fig.9  Instantaneous precipitation volume fraction of TiN particles at the liquid-solid interface during solidification (a) S1, (b) S2, (c) S3
S1S2S3
Solidus, TS / oC146014731477

TiN inclusion precipitation in solidified liquid phase / %

(The proportion of total precipitation)

0.00473 (28.3%)0.00091 (6.1%)0.00010 (0.9%)

TiN particles precipitation in solidified solid phase / %

(The proportion of total precipitation)

0.000980 (5.9%)0.000051 (0.3%)0

Solid phase TiN particles precipitate at 1150oC / %

(The proportion of total precipitation)

0.01099 (65.8%)0.01404 (93.6%)0.0110 (99.1%)
Total precipitation / %0.01670.01500.0111
Table 3  Volume fraction of TiN particles precipitated under equilibrium condition
1 Sun L, Zhang S, Song R, et al. Effect of V, Nb, and Ti microalloying on low-temperature impact fracture behavior of non-quenched and tempered forged steel [J]. Mater. Sci. Eng. A-Struct., 2023, 879: 145299
2 Thridandapani R R, Misra R D K, Mannering T, et al. The application of stereological analysis in understanding differences in toughness of V- and Nb-microalloyed steels of similar yield strength [J]. Mater. Sci. Eng. A-Struct., 2006, 422(1-2): 285
3 Hui Y J, Pan H, Liu K, et al. Strengthening mechanism of 600 MPa grade Nb-Ti microalloyed high formability crossbeam steel [J]. Acta Metall. Sin., 2017, 53(8): 937
doi: 10.11900/0412.1961.2017.00038
惠亚军, 潘 辉, 刘 锟 等. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制 [J]. 金属学报, 2017, 53(8): 937
doi: 10.11900/0412.1961.2017.00038
4 Wang Z, Mao X, Yang Z, et al. Strain-induced precipitation in a Ti micro-alloyed HSLA steel [J]. Mater. Sci. Eng. A-Struct., 2011, 529: 459
5 Capurro C, Cicutti C. Analysis of titanium nitrides precipitated during medium carbon steels solidification [J]. J. Mater. Res. Technol., 2018, 7(3): 342
6 Tian Y, Yu H, Zhou T, et al. Revealing morphology rules of MX precipitates in Ti-V-Nb multi-microalloyed steels [J]. Mater. Charact., 2022, 188: 111919
7 Liu G, Liao T, Wang S, et al. Revealing the precipitation kinetics of multi-stage and multi-scale Ti-bearing precipitation in a 460 MPa grade HSLA steel [J]. Mater. Sci. Eng. A-Struct., 2024, 890: 145941
8 Wu S X, Chen D F, Wang Q Z, et al. Thermodynamic study on precipitation of TiN and TiC in continuous casting of titanium microalloyed steel [J]. Contin. Cast., 2019, 44(1): 28
吴石新, 陈登福, 汪勤政 等. 钛微合金钢连铸中TiN与TiC析出热力学研究 [J]. 连铸, 2019, 44(1): 28
9 Medina S F, Chapa M, Valles P, et al. Influence of Ti and N contents on austenite grain control and precipitate size in structural steels [J]. ISIJ Int., 1999, 39(9): 930
10 Du J L, Strangwood M, Davis C L. Effect of TiN particles and grain size on the charpy impact transition temperature in steels [J]. J. Mater. Sci. Technol., 2012, 28(10): 878
11 Xing L, Guo J, Li X, et al. Control of TiN precipitation behavior in titanium-containing micro-alloyed steel [J]. Mater. Today Commun., 2020, 25: 101292
12 Moon J, Lee C, Uhm S, et al. Coarsening kinetics of TiN particle in a low alloyed steel in weld HAZ: Considering critical particle size [J]. Acta Mater., 2006, 54(4): 1053
13 Duan H, Zhang Y, Ren Y, et al. Distribution of TiN inclusions in Ti-stabilized ultra-pure ferrite stainless steel slab [J]. J. Iron Steel Res. Int., 2018, 26(9): 962
14 Jin Y L, Du S L. Precipitation behaviour and control of TiN inclusions in rail steels [J]. Ironmaking Steelmaking, 2016, 45(3): 224
15 Guo S, Zhu H Y, Han Y. Research progress on influence of inclusion on ductility and toughness of steel [J]. J. Iron Steel Res., 2022, 34(8): 713
doi: 10.13228/j.boyuan.issn1001-0963.20210279
郭 帅, 朱航宇, 韩 赟 等. 夹杂物对钢塑性和韧性的影响研究进展 [J]. 钢铁研究学报, 2022, 34(8): 713
16 Li N, Xue Z L, Wang L. Precipitation mechanism of heterogeneous nucleation of TiN composite inclusions in SWRH 92A tire cord steel [J]. J. Iron Steel Res., 2022, 34(10): 1118
doi: 10.13228/j.boyuan.issn1001-0963.20210377
李 宁, 薛正良, 王 璐. SWRH 92A帘线钢中异相形核TiN复合夹杂析出机制 [J]. 钢铁研究学报, 2022, 34(10): 1118
17 Tian Q, Li J, Wu X, et al. Growth mechanism of MnS/Fe on TiN surface: First principle investigation [J]. J. Alloys Compd., 2020, 844: 155831
18 Peng Z, Li L, Gao J, et al. Precipitation strengthening of titanium microalloyed high-strength steel plates with isothermal treatment [J]. Mater. Sci. Eng. A-Struct., 2016, 657: 413
19 Li N, Wang L, Li C Z, et al. Precipitation thermodynamics and formation mechanism of Ti inclusions in hypereuteetoid tire cord steel [J]. J. Iron Steel Res., 2022, 34(3): 200
李 宁, 王 璐, 李承志 等. 过共析帘线钢中Ti夹杂的析出热力学与形成机制 [J]. 钢铁研究学报, 2022, 34(3): 200
20 Shang T, Wang W, Kang J, et al. Precipitation behavior of TiN in solidification of 20CrMnTi under continuous casting conditions [J]. J. Mater. Res. Technol., 2023, 24: 3608
21 Gui L, Long M, Zhang H, et al. Study on the precipitation and coarsening of TiN inclusions in Ti-microalloyed steel by a modified coupling model [J]. J. Mater. Res. Technol., 2020, 9(3): 5499
22 Matsuda S, Okumura N. Effect of distribution of TiN precipitate particles on the austenite grain size of low carbon low alloy steels [J]. Trans. Iron Steel Inst. Jpn., 1978, 18(4): 198
23 Narita K. Physical chemistry of the groups IVa (Ti, Zr), Va (V, Nb, Ta) and the rare earth elements in steel [J]. Trans. Iron Steel Inst. Jpn., 1975, 15(3): 145
24 Clyne T W, Kurz W. Solute redistribution during solidification with rapid solid state diffusion [J]. Metall. Mater. Trans. A, 1981, 12: 965
25 Sheng J, Wei J F, Meng Y H, et al. Thermodynamical analysis of TiN precipitation in 21Cr ultra pure ferrite stainless steel [J]. J. Lanzhou Univ. Technol., 2023, 49(5): 1
盛 捷, 魏佳富, 孟亚惠 等. 21Cr超纯铁素体不锈钢TiN析出的热动力学研究 [J]. 兰州理工大学学报, 2023, 49(5): 1
26 Ma Z, Janke D. Characteristics of oxide precipitation and growth during solidification of deoxidized steel [J]. ISIJ Int., 1998, 38(1): 46
27 Fu J, Qiu W, Nie Q, et al. Precipitation of TiN during solidification of AISI 439 stainless steel [J]. J. Alloys Compd., 2017, 699: 938
28 Zhang Z F, Xing L D, Wang M, et al. Analysis of precipitation behavior of TiN in low carbon micro alloyed steel [J]. Contin. Cast., 2020, (5): 38
张泽峰, 邢立东, 王 敏 等. 低碳微合金钢中TiN的析出行为分析 [J]. 连铸, 2020, (5): 38
doi: 10.13228/j.boyuan.issn1005-4006.20200052
29 Zhang X Y, Peng J, Peng J H. Effect of nitrogen content on the thermodynamics of inclusion precipitation in rare-earth steel [J] Chin. Rare Earth, 2022, 43(6): 1
张肖遥, 彭 军, 彭继华. 氮含量对稀土钢中夹杂析出热力学的探究 [J]. 稀土, 2022, 43(6): 1
30 Wang Y, Yang J, Bao Y. Characteristics of BN precipitation and growth during solidification of BN free-machining steel [J]. Metall. Mater. Trans. B, 2014, 45(6): 2269
31 Yong Q L. The Second Phase in Iron and Steel Materials [M]. Beijing: Metallurgical Industry Press, 2006: 26
雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 26
[1] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
[3] WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. 材料研究学报, 2024, 38(9): 701-710.
[4] SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide[J]. 材料研究学报, 2024, 38(9): 680-690.
[5] CEN Yaodong, JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui. Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel[J]. 材料研究学报, 2024, 38(9): 711-720.
[6] LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. 材料研究学报, 2024, 38(8): 621-631.
[7] LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. 材料研究学报, 2024, 38(8): 561-568.
[8] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[9] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[11] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[12] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[13] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[14] WANG Jinlong, WANG Huiming, LI Yingju, ZHANG Hongyi, LV Xiaoren. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. 材料研究学报, 2024, 38(7): 481-489.
[15] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
No Suggested Reading articles found!