Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (12): 932-940    DOI: 10.11901/1005.3093.2024.126
ARTICLES Current Issue | Archive | Adv Search |
Influence of Cerium on Microstructure and Mechanical Properties of Cast T15 High Speed Steel
TU Houtian1,2, HU Xiaoqiang3,4(), YANG Renxian3,4, WANG Qian1,2, LI Dianzhong3,4
1 School of Rare Earths, University of Science and Technology of China, Ganzhou 341000, China
2 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

TU Houtian, HU Xiaoqiang, YANG Renxian, WANG Qian, LI Dianzhong. Influence of Cerium on Microstructure and Mechanical Properties of Cast T15 High Speed Steel. Chinese Journal of Materials Research, 2024, 38(12): 932-940.

Download:  HTML  PDF(18944KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Ce addition on the microstructure and Ce distribution characteristics of the as-cast T15 high speed steel (T15 HSS) was investigated by OM, SEM, XRD, EBSD and EPMA. The primary carbides and mechanical properties of the as-cast T15 micro-alloyed without and with Ce were also assessed comparatively by nanoindentation and tensile tests. The results show that the amount of alloyed Ce in T15 HSS enriches mainly in rare earth containing granular inclusions, but a few distributes uniformly in MC primary carbides. The addition of 0.021wt.%Ce does not change the as-cast microstructure types, but it obviously refines the primary carbides, remarkably enhances the plasticity and toughness of MC carbides, and significantly improves the mechanical properties of T15 HSS. Comparing the T15 HSS micro-alloyed with Ce to that without Ce, the average equivalent diameter and maximum size of primary carbides decreased from 4.70 μm and 120.25 μm to 2.91 μm and 105.39 μm, with decrement 38.08% and 12.35%, respectively. The amount of V in MC primary carbides decreased by 6.16 at.%, and the morphology of these carbides changed from thick branches into spots. Moreover, the plasticity factor and fracture toughness of MC primary carbides increase from 0.47 and 1.63 MPa·m1/2 to 0.50 and 2.32 MPa·m1/2, respectively. Thus, the hardness, bending strength and tensile strength of as-cast T15 HSS increased from 48.88 HRC, 1491.06 MPa and 1122.41 MPa to 51.72 HRC, 1621.58 MPa and 1181.83 MPa, respectively.

Key words:  metallic materials      T15 high speed steel      rare earth element      primary carbides      as-cast microstructure      mechanical property     
Received:  18 March 2024     
ZTFLH:  TG142.1  
Fund: Supporting Project for the Science and Technology Service from Chinese Academy of Sciences in Fujian Province(2023T3062);Research Projects of Ganjiang Innovation Academy in Chinese Academy of Sciences(E355B0020);Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y2021060);LiaoNing Revitalization Talents Program(XLYC2203158)
Corresponding Authors:  HU Xiaoqiang, Tel: (024)23971127, E-mail: xqhu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.126     OR     https://www.cjmr.org/EN/Y2024/V38/I12/932

AlloyCSiMnPSCrMoWCoVCeFe
T15A1.630.120.0970.0080.00164.220.212.144.835.390Bal.
T15Ce1.580.130.0520.0080.00104.250.2112.114.825.450.021Bal.
Table 1  Chemical composition of the T15 HSSs (mass fraction, %)
Fig.1  Optical microstructure of as-cast T15A (a) and T15Ce (b) HSSs
Fig.2  X-ray diffraction patterns of as-cast structure of T15A and T15Ce HSSs
Fig.3  EBSD image (a) and EDS profiles (b, c) of primary carbides in T15A HSS
Fig.4  SEM-BSE morphology and characteristic element mapping images of primary carbides in T15A (a) and T15Ce (b) HSSs
AlloyfC / %fMC / %fM2C / %dMe / μmdMa / μml / μm
T15A15.5079.8220.184.70120.203.65
T15Ce13.8872.9627.042.91105.392.01
Table 2  Characteristic parameters of primary carbidess in as-cast two T15 HSSs
Alloy%, atom fraction
VCrFeCoW
T15A69.58±2.65.05±0.644.79±0.630.29±0.1320.31±2.03
T15Ce63.42±6.466.02±1.439.29±2.030.49±0.4820.84±3.78
Table 3  EDS analysis results of the MC primary carbides in as-cast two T15 HSSs
Fig.5  SEM-BSE morphology (a) and element Ce mapping images (b) of T15Ce HSS
Fig.6  SEM-BSE morphology and elements mapping images of Ce-O-S (a) and Ce-O-P (b) in T15Ce HSS
Fig.7  Bending strength and hardness of T15A and T15Ce HSSs
Fig.8  Stress-strain curves of T15A and T15Ce HSSs
Fig.9  Morphology of tensile fracture of T15A (a, c) and T15Ce (b, d) HSSs
PhaseLattice structureSpace groupLattice parameter
M2CHexagonalP63/mmca = 2.955, c = 4.650
MCCubicFm3¯ma = 4.180
Ce2O2SHexagonalP3¯m1a = 3.976, c = 6.882
Ce2O3HexagonalP3¯m1a = 3.891, c = 6.059
Table 4  Crystallographic parameters of two primary carbides and RE-containing inclusions
[uvw]s[uvw]nd[uvw]sd[uvw]nθ / (°)δ / %
(1010)Ce2O3//(0110)M2C1¯21¯000013.8914.65007.82
1¯21¯11¯21¯27.2017.5205.273
00011¯21¯06.0595.9100
(1010)Ce2O2S//(0110)M2C1¯21¯000013.9764.650011.84
1¯21¯11¯21¯27.9477.5208.178
00011¯21¯06.8825.9100
(1010)Ce2O3//(110)MC1¯21¯00103.8914.18003.35
00011106.0595.9110
2¯1101117.2017.2402.340
(0001)Ce2O2S//(110)MC1¯21¯00103.9764.180010.25
1¯0100016.8865.9110
2¯1100127.9527.2405.266
Table 5  Calculation of minimum disregistry between rare earth inclusions and carbides
Fig.10  P-H curves (a) and hardness, elastic modulus, plasticity factor and fracture toughness (b) of MC carbides in T15A and T15Ce HSSs by nanoindentation
1 Chen N L. Study of processing, microstructure and properties of T15 powder high speed steel [D]. Harbin: Harbin Institute of Technology, 2012
陈年莲. T15粉末高速钢制备及组织和性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012
2 Yu H, Ding F C, Wang E K. Investigation on rapidly solidified T15 high speed steel powders and its bulk material [J]. J. Iron Steel Res., 1989, (S1): 141
余 挥, 丁福昌, 王恩珂. 快速凝固T15高速钢粉末及其材料的研究 [J]. 钢铁研究学报, 1989, (S1): 141
3 Hu H B, Zhu L H, Duan Y M. In-situ study of microcrack initiation and propagation of M2 high speed steel [J]. Chin. J. Mater. Res. 2022, 36(5): 365
胡海波, 朱丽慧, 段元满 等. 原位研究M2高速钢微裂纹的萌生和扩展 [J]. 材料研究学报, 2022, 36(5): 365
doi: 10.11901/1005.3093.2021.405
4 Wei S, Zhu J, Xu L. Effects of vanadium and carbon on microstructures and abrasive wear resistance of high speed steel [J]. Tribol. Int., 2006, 39(7): 641
5 Fukaura K, Yokoyama Y, Yokoi D, et al. Fatigue of cold-work tool steels: Effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observations [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2004, 35A(4) : 1289
6 Zhang G Q, Yuan H, Jiao D L, et al. Microstructure evolution and mechanical properties of T15 high speed steel prepared by twin-atomiser spray forming and thermo-mechanical processing [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2012, 558: 566
7 Chaus A S, Porubski J. Effect of heat treatment on the structure of cast high-speed steel of type R6M5 modified with Tungsten additives [J]. Met. Sci. Heat Treat., 2014, 55(11-12): 583
8 Lima E P R, Das Neves M D M, Nogueira R A, et al. Effect of different tempering stages and temperatures on microstructure, tenacity and hardness of vacuum sintered HSS AISI T15 [R]. Buzios: IPEN-CNEN/SP. 2008
9 Zhou X F, Fang F, Tu Y Y, et al. Effect of Aluminum on the solidification microstructure of M2 high speed steel [J]. Acta Metall. Sin., 2014, 50(7): 769
doi: 10.3724/SP.J.1037.2013.00621
周雪峰, 方 峰, 涂益友 等. Al对M2高速钢凝固组织的影响 [J]. 金属学报, 2014, 50(7): 769
doi: 10.3724/SP.J.1037.2013.00621
10 Wang H B, Hou L G, Li Y B, et al. Effect of Niobium on the secondary precipitates and tempering resistance of spray-formed M3:2 high-speed steel [R]. Buzios: IPEN-CNEN/SP. 2008
11 Zhao B, Xia M, Wang J F, et al. Effect of Rare Earth elements on microstructure and hot workability of AISI T15 high speed steel [J]. ISIJ Int., 2022, 62(11): 2410
12 Zheng D L, Ma G J, Li J, et al. Effect of cerium on the primary carbides and inclusions in electroslag remelted M35 high speed steel [J]. J. Mater. Res. Technol., 2023, 24: 8252
13 Chen P, Liu Y, Ping X, et al. Influence mechanism of Y addition on microstructure, absorbability, mechanical properties of as-cast high speed steel [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2023, 863
14 Jiao W C, Li H B, Feng H, et al. Evolutions of micro- and macrostructure by cerium treatment in as-cast AISI M42 high-speed steel [J]. Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 2020, 51(5): 2240
15 Luo D, Xing G H, Zhou H L, et al. Segregation of S and P along grain boundary in high speed steels and cleaning action of RE elements [J]. Acta Metall. Sin., 1983, (4): 121
罗 迪, 邢国华, 邹惠良 等. S, P在高速钢晶界上的偏聚与稀土元素的净化作用 [J]. 金属学报, 1983, (4): 121
16 Yang W Y, Xie Z B, Wang K, et al. Study on Rare Earth modification of carbides structure of high speed steel [J]. Hebei Metall., 2021, (11): 32
杨文义, 谢志彬, 王 凯 等. 高速钢碳化物组织稀土改性研究 [J]. 河北冶金, 2021, (11): 32
17 Zhou X F, Fang F, Tu Y Y, et al. Carbide refinement in M42 high speedsteel by rare earth metals and spheroidizing treatment [J]. J. Mater.Sci. Technol., 2014, 30(4): 445
18 Wu Z J, Chen Z G, Xiang Y, et al. Effect of small amount of Ce addition on microstructure and mechanical properties of high-boron high speed steel [J]. Chin. J. Nonfer. Metal., 2013, 23(5): 1289
吴中佳, 陈志国, 向 勇 等. 少量铈对高硼高速钢微观组织与力学性能的影响 [J]. 中国有色金属学报, 2013, 23(5): 1289
19 Li D Z, Wang P, Chen X Q, et al. Low-oxygen rare earth steels [J]. Nat. Mater., 2022, 21(10): 1137
doi: 10.1038/s41563-022-01352-9 pmid: 36075967
20 Bramfitt B L. The effect of carbide and nitride additions on the het‐erogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1(7): 1987
21 Dukino R D, Swain M V. Comparative measurement of indentation fracture-toughness with Berkovich and Vickers indenters [J]. J. Am. Ceram. Soc., 1992, 75(12): 3299
22 Guo F. Effects of Rare Earth elements in solid solution on ferrite phase transformation and microstructures in steels [D]. Hefei: University of Science and Technology of China, 2022
郭 飞. 固溶稀土元素对钢中铁素体相变和显微组织的影响研究 [D]. 中国科学技术大学, 2022
23 Casellas D, Caro J, Molass S, et al. Fracture toughness of carbides in tool steels evaluated by nanoindentation [J]. Acta Mater., 2007, 55(13): 4277
24 Liu H H, Fu P X, Liu H W, et al. Effects of Rare Earth elements on micro‐structure evolution and mechanical properties of 718H pre-hard‐ened mold steel [J]. J. Mater. Sci. Technol., 2020, 50: 245
25 Zhu H, Zhu Q, Kosasih B, et al. Investigation on mechanical properties of high speed steel roll material by nanoindentation [J]. Mater. Res. Innov, 2013, 17: 35
[1] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
[3] WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. 材料研究学报, 2024, 38(9): 701-710.
[4] SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide[J]. 材料研究学报, 2024, 38(9): 680-690.
[5] CEN Yaodong, JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui. Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel[J]. 材料研究学报, 2024, 38(9): 711-720.
[6] LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. 材料研究学报, 2024, 38(8): 621-631.
[7] LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. 材料研究学报, 2024, 38(8): 561-568.
[8] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[9] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[11] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[12] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[13] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[14] WANG Jinlong, WANG Huiming, LI Yingju, ZHANG Hongyi, LV Xiaoren. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. 材料研究学报, 2024, 38(7): 481-489.
[15] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
No Suggested Reading articles found!